智能诊断——人工智能在云平台上的新玩法

简介: 在12月7日召开的云栖大会苏州峰会上,由阿里云高级技术专家许玲带来了“智能诊断——人工智能在云平台上的新玩法”的演讲。分享了云上IT系统运维的诉求,需要解决的问题,典型场景与案例的分析以及目前取得的成果与实践。

摘要:在12月7日召开的云栖大会苏州峰会上,由阿里云高级技术专家许玲带来了“智能诊断——人工智能在云平台上的新玩法”的演讲。分享了云上IT系统运维的诉求,需要解决的问题,典型场景与案例的分析以及目前取得的成果与实践。

 

以下为精彩视频整理:

 

阿里云在某一些具体领域把人工智能和企业级云上架构结合起来,解决一些刚需问题。有些人工智能落地的问题在传统的IT架构里面是很难做到,但现在在云上可以完成了。


云上IT系统的运维诉求

442451f2f432636fd783c1d0d0c755215459d6cb

在把系统上云之后,我们发现在运维层面的诉求和原来有很大的不同。上云后业务增长的会比较快,技术架构也会持续迭代,这就要求运维的人对业务和对技术架构同时掌握的比较清楚,进而就会提高对技术人员的要求。但和传统的IT系统运维还是有一脉相传的地方,同样要求系统稳定性要好,在高负载下有很好的并发,有高并发处理的能力,可以随着业务的增长而扩展。在安全性的诉求上,因为业务需求带来的系统技术容量上的弹性伸缩,这就需要更敏捷的做到伸缩,保证系统的性价比。

一个传统半自动运维模式是首先进行大量的数据采集,数据采集之后做成报表,可以做定制化的报警,最后需要人工对产生的报警做问题的分析,找到问题的原因,进而去做系统级的或者模块级的优化。这样会带来两个问题,一是业务的变化带来系统架构的变化,就会对人的要求非常的高;一是这种模式滞后性比较强,往往是已经报警了问题已经出现了,人工才去分析和解决问题。

在过去两年我的团队做了一些基础的探索,目前也取得了一些初步的成果,所以下面给大家分享一下怎么样用AI的技术做一些突破。


要解决的问题

既然是用AI的技术必然就涉及两个方面,第一个就是AI必须能够主动的学到一些新的、未知的东西。第二个就是不同的用户可能面临同样的问题,但是解决方案是不一样的,尤其在云平台上这一点表现的非常明显。

AI的商业化有一点就是要解决刚需,不是去做创造性的需求。AI的技术能否成功落地取决于算法、场景、工程和数据这四大要素。其中最关键的一个问题就在于数据,为什么说要在云平台上做这件事才做的成,因为它让数据在线。在线后的数据恰恰是做运维的智能化、做诊断的智能化非常依赖的数据。

为什么说云平台创造了智能化的条件,是因为它让数据在线,同时还有大量的在线异构数据。我们需要非常庞大的计算、存储、传输的能力,才能把这些数据用起来,才能学到随着系统和业务的变化形成新的模式,进而得到这些模式下对应的问题和解决方案分别是什么。


典型场景与案例分析

baca27ea65b9cac0aa924e0008423c3cc1b660e5

要想让机器人具有认知能力,就需要大量的人工数据的打标,告诉机器人什么样的数据有什么样的响应。机器人做不到以不变应万变,在上线一段时间后整体的业务效果会萎缩,准确率也会下降,每隔一段时间就需要人工的对所有的数据进行一次梳理,然后再来打标,产生第二版的数据,这个过程会循环的周而复始。

323a21c633da24d1bd21d602ffc22d6e1118fcc8

阿里云经过尝试得到了一个解决的方法,我们称之为数据闭环,带来了AI自学习的能力。对系统的网络流量、磁盘IO的使用量、CPU的使用量、以及业务发展、用户访问量这些数据记录下来之后,通过一套离线的自学习算法,是可以让机器自己来学习到新的知识,不需要人工的参与。提取出来的结果,可以有一个人工的审核的过程,审核后的数据可以做为下一版的数据进行应用。


成果与实践

6723b4861d5a234099d64ed6599e80b6aaecf633

经过我们的努力也取得了一定的成果,下面是我们在客服的领域实施的一个具体的实践。首先云平台上提供了大量的数据,包括用户行为的数据,会对行为来进行分析,可以知道今天所有AI信息哪些是对的哪些是错的。对于用户画像是基于我们的需求来做的,画像主要是用于不同的客户可能存在同样的问题,但问题背后的原因是不一样的,不同的原因提供解决方案是不同的。关于云产品的健康监控,需要人工去定义一些指标来进行监控。所有的这些数据最后会成为一个决策系统,去分析问题的原因以及去计算解决答案。

3fdeaa3f1d677de14bea4c9c688d3cd8fc08acf5

离线计算出来的模型,最后会形成一组决策树。每一类问题会对应一组决策树,每个决策树的根结点就是一个问题的表现,叶子结点就是这个问题的解决方案,中间会有很多条件,这些条件有些是用户系统的特征有些是用户画像的特征,通过这个智能的方法算出这些问题模型之后,就可以得到解决的方案。

 

这是关于智能诊断我们在今年的11月份已经上线的一部分功能,正在通过售后的渠道开放给用户免费来用,目前对于云资源使用的风险,以及可能遭受安全攻击的一些风险,或者目前正遭受安全攻击,要怎么样去解决这些问题的诊断和建议。这样的诊断能力是目前我们已经开放出来的,那么未来我们也会有更多的诊断能力开放出来。

 

在离线分析平台部分我们也面临一些问题,比如说我们在做聚类分析的过程中会存在有大量的没有办法聚到一起的情况,这个地方还在进行探索和突破,预计会在明年的年初会有更多的技术细节是可以开放出来的。


本文由云栖社区志愿者小组smile小太阳整理,毛鹤审校。编辑:郭雪梅。

相关文章
|
10天前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能与未来教育:探索智能教学的新纪元
【10月更文挑战第16天】 在21世纪这个信息爆炸的时代,技术革新正以惊人的速度改变着我们的生活和工作方式。其中,人工智能(AI)作为引领变革的先锋力量,不仅重塑了工业、医疗、金融等多个行业的面貌,也正悄然渗透进教育领域,预示着一场关于学习与教学方式的革命。本文旨在探讨人工智能如何为未来教育带来前所未有的机遇与挑战,从个性化学习路径的定制到教育资源的优化分配,再到教师角色的转变,我们一同展望一个更加智能、高效且包容的教育新纪元。
|
4天前
|
机器学习/深度学习 人工智能 算法
人工智能在医疗诊断中的应用及其挑战
【10月更文挑战第22天】人工智能技术正逐渐渗透到我们生活的方方面面,尤其是在医疗领域,它展现出了巨大的潜力。从辅助医生进行疾病诊断到预测患者病情的发展,AI的应用正在改变着传统的医疗模式。然而,随之而来的是一系列挑战,包括数据隐私、算法偏见以及医患关系的重新定位等问题。本文将探讨AI在医疗诊断中的应用实例,并分析面临的主要挑战,以期对未来的医疗AI应用提供深入的见解和建议。
|
12天前
|
机器学习/深度学习 人工智能 自然语言处理
探索人工智能在医疗诊断中的应用与发展
【10月更文挑战第13天】 随着科技的不断进步,人工智能(AI)在医疗领域展现出巨大潜力。本文将探讨AI在医疗诊断中的应用现状、面临的挑战以及未来发展的趋势。通过深入分析AI技术如何辅助医生提高诊断精度和效率,我们期望能为相关领域的研究和实践提供有价值的参考。
43 1
|
15天前
|
机器学习/深度学习 人工智能 算法
探究人工智能在医疗诊断中的应用与挑战
本文深入探讨了人工智能(AI)技术在现代医疗诊断中的多样化应用,包括影像识别、临床决策支持系统和个性化治疗方案的制定等。同时,文章也剖析了AI在数据隐私保护、算法透明度以及跨学科合作等方面所面临的挑战,并提出了相应的解决策略。通过综合分析,旨在为读者提供关于AI在医疗领域未来发展的洞见与思考。
|
15天前
|
机器学习/深度学习 人工智能 监控
AI与未来医疗:革命性的诊断与治疗
【10月更文挑战第11天】 本文探讨了人工智能(AI)在现代医疗领域的应用,重点分析了AI如何通过精确的数据分析和机器学习技术,实现疾病的早期诊断和个性化治疗方案。通过具体案例展示了AI在医学影像分析、基因编辑、远程医疗及患者管理等方面的巨大潜力。同时,也讨论了AI在医疗中面临的伦理和隐私挑战,并提出了可能的解决方案。
|
17天前
|
机器学习/深度学习 人工智能 搜索推荐
AI在医疗诊断中的应用与未来发展趋势分析
【10月更文挑战第9天】 本文深入探讨了人工智能(AI)在医疗诊断领域的现状及其应用,包括影像识别、临床数据处理及个性化治疗方案的制定。通过具体案例分析,展示了AI技术如何提高诊断准确性、缩短诊断时间,并减轻医生的工作负担。同时,本文还讨论了AI在医疗诊断中面临的伦理问题和法律障碍,以及解决这些问题的可能途径。最后,对AI在未来医疗行业中的发展潜力进行了展望,指出其在提升医疗服务质量和效率方面的巨大潜力。
33 2
|
2天前
|
机器学习/深度学习 人工智能 搜索推荐
AI在医疗诊断中的应用
【10月更文挑战第23天】随着人工智能技术的不断发展,AI在医疗领域的应用也日益广泛。本文将介绍AI在医疗诊断中的一些应用,包括医学影像分析、病理诊断、基因数据分析等。通过这些应用,我们可以更好地理解AI技术在医疗诊断中的价值和潜力。
|
5天前
|
人工智能 自然语言处理 IDE
CodeFuse IDE 0.6 版本发布,支持编辑器诊断问题 AI 修复
CodeFuse IDE 是基于蚂蚁自研大模型和 OpenSumi 框架的 AI 编程助手,支持多语言,提供代码建议、解释、测试生成等,增强开发效率。最新版增加 AI 修复和智能补全功能,开源并支持 VS Code 插件生态。[了解更多](https://github.com/codefuse-ai/codefuse-ide)
24 0
|
19天前
|
人工智能 搜索推荐 算法
探索AI技术在医疗诊断中的应用与挑战
【10月更文挑战第7天】 人工智能(AI)在医疗领域的应用日益广泛,尤其在医疗诊断中表现出巨大的潜力和价值。本文将探讨AI在医疗诊断中的具体应用、所面临的伦理和隐私问题以及未来的发展方向,旨在为读者提供一个全面而深入的理解。
32 0
|
20天前
|
机器学习/深度学习 移动开发 自然语言处理
基于人工智能技术的智能导诊系统源码,SpringBoot作为后端服务的框架,提供快速开发,自动配置和生产级特性
当身体不适却不知该挂哪个科室时,智能导诊系统应运而生。患者只需选择不适部位和症状,系统即可迅速推荐正确科室,避免排错队浪费时间。该系统基于SpringBoot、Redis、MyBatis Plus等技术架构,支持多渠道接入,具备自然语言理解和多输入方式,确保高效精准的导诊体验。无论是线上医疗平台还是大型医院,智能导诊系统均能有效优化就诊流程。