HDOJ 1466

简介: 计算直线的交点数 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 5744 Accepted Submission(s): 2554 Problem Description 平面上有n条直线,且无三线共点,问这些直线能有多少种不同交点数。

计算直线的交点数

Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 5744 Accepted Submission(s): 2554


Problem Description
平面上有n条直线,且无三线共点,问这些直线能有多少种不同交点数。
比如,如果n=2,则可能的交点数量为0(平行)或者1(不平行)。
 

 

Input
输入数据包含多个测试实例,每个测试实例占一行,每行包含一个正整数n(n<=20),n表示直线的数量.
 

 

Output
每个测试实例对应一行输出,从小到大列出所有相交方案,其中每个数为可能的交点数,每行的整数之间用一个空格隔开。
 

 

Sample Input
2 3
 

 

Sample Output
0 1 0 2 3
这道题没啥说的,直接套用模板,杭电的哥们貌似都是这样的


 m条直线的交点方案数
= (m-r)条平行线与r条直线交叉的交点数 + r条直线本身的交点方案
= (m-r)*r + r条之间本身的交点方案数

    即p[j][k]→p[i][(i-j)*j+k],或者便于理解的形式:p[m+△x][n]→p[m+△x][m*△x+n],其中△x是增加的平行直线数,它们会和原来的m条直线交出m*△x个新交点,再加上原本的n个交点即可。虽然是二维数组,但存在三个变量,故处理时是三重for循环。





#include <iostream>
using namespace std;
bool p[21][191];
void init()
{
    int i, j, k;
    for( i=1; i<21; i++ )
        p[i][0] = true;
    for( i=2; i<21; i++ )
        for( j=1; j<=i; j++ )
            for( k=0; k<191; k++ )
                if( p[j][k] )
                    p[i][(i-j)*j+k] = true;
}
 int main()
{
    init();
    int i, n, t;
    while( cin >> n )
    {
        t = (n*(n-1))/2;
        for( i=0; i<t; i++ )
            if( p[n][i] )
                cout << i << " ";
        cout << t << endl;
    }
    return 0;
}

 

目录
相关文章
|
Java C++
hdoj 1715 大菲波数
先java代码
57 1
|
算法
HDOJ 3466 Proud Merchants
HDOJ 3466 Proud Merchants
107 0
HDOJ 3466 Proud Merchants
HDOJ 2050 折线分割平面
HDOJ 2050 折线分割平面
136 0
HDOJ 2050 折线分割平面
HDOJ 2056 Rectangles
HDOJ 2056 Rectangles
136 0
|
Java
HDOJ 1715 大菲波数
HDOJ 1715 大菲波数
110 0
HDOJ 2033 人见人爱A+B
HDOJ 2033 人见人爱A+B
160 0
|
安全
HDOJ 2022 海选女主角
HDOJ 2022 海选女主角
155 0
HDOJ 1323 Perfection(简单题)
Problem Description From the article Number Theory in the 1994 Microsoft Encarta: “If a, b, c are integers such that a = bc, a is called a...
849 0
HDOJ 2034 人见人爱A-B
Problem Description 参加过上个月月赛的同学一定还记得其中的一个最简单的题目,就是{A}+{B},那个题目求的是两个集合的并集,今天我们这个A-B求的是两个集合的差,就是做集合的减法运算。
884 0