Tikhonov regularization和岭回归

简介:   就实现过程来讲,两者是一样的,都是最小二乘法的改进,对于病态矩阵的正则化,只不过分析的角度不一样,前者是解决机器学习中过拟合问题,机器学习一般是监督学习,是从学习角度来说的,后者是数学家搞的,是为了解决病态矩阵的问题。

  就实现过程来讲,两者是一样的,都是最小二乘法的改进,对于病态矩阵的正则化,只不过分析的角度不一样,前者是解决机器学习中过拟合问题,机器学习一般是监督学习,是从学习角度来说的,后者是数学家搞的,是为了解决病态矩阵的问题。

目录
相关文章
|
7月前
|
机器学习/深度学习 算法
【机器学习】正则化 Regularization 过拟合欠拟合
【1月更文挑战第27天】【机器学习】正则化 Regularization 过拟合欠拟合
|
7月前
|
机器学习/深度学习 算法
正则化(Regularization)
正则化是防止机器学习过拟合的策略,通过在损失函数中添加惩罚项(如L1或L2范数)来降低模型复杂度,提高泛化能力。L1正则化产生稀疏权重,倾向于使部分权重变为0,而L2正则化使所有权重变小,具有平滑性。正则化强度由λ控制,λ越大,泛化能力越强,但可能导致欠拟合。
59 0
|
7月前
|
机器学习/深度学习 自然语言处理 算法
[UIM]论文解读:subword Regularization: Multiple Subword Candidates
[UIM]论文解读:subword Regularization: Multiple Subword Candidates
59 0
|
机器学习/深度学习 算法 调度
模拟退火(Simulated Annealing)
模拟退火(Simulated Annealing)是一种元启发式优化算法,灵感来自固体退火的物理过程。它用于在复杂的搜索空间中寻找全局最优解或接近最优解的近似解。模拟退火算法通过在搜索过程中接受一定概率的劣解,以避免陷入局部最优解,并逐渐减小概率,使搜索逐渐趋向于全局最优解。
224 3
|
数据挖掘
Re19:读论文 Paragraph-level Rationale Extraction through Regularization: A case study on European Court
Re19:读论文 Paragraph-level Rationale Extraction through Regularization: A case study on European Court
Re19:读论文 Paragraph-level Rationale Extraction through Regularization: A case study on European Court