TMR 齿轮编码器可支持高达256倍细分的数字增量式输出模式

简介:

专业的隧道磁阻 (TMR) 磁传感器领先供应商江苏多维科技有限公司 (MultiDimension Technology Co., Ltd., MDT) 日前推出 TMR 齿轮编码器 TMR-GE 系列。该系列产品包括 TMR-GE04、TMR-GE05 和 TMR-GE08 齿轮编码器,分别应用于0.4、0.5和0.8模数的齿轮,每个齿轮间距内支持高达256倍细分的数字增量式输出模式,可广泛适用于伺服电机、能源和发电系统、精密仪器、自动化设备和电梯等需要对旋转位置和速度进行精准测量的多种工业应用。

江苏多维科技推出TMR齿轮编码器

多维科技董事长兼首席执行官薛松生博士表示:“MDT 的 TMR-GE04/05/08 系列是市场上的首款基于 TMR 技术的齿轮编码器产品。根据我们在 TMR 传感器技术和磁铁设计上所具备的深厚的专业知识,并配备最先进的信号处理电路,TMR-GE 系列产品以先进的 TMR 传感器技术给用户带来了新的选项,通过高灵敏度、很低的谐波失真、较大的测量气隙容差,和高速响应等突出特点弥补了市场上现有产品的局限性。MDT 在现有的诸家 TMR 传感器供应商中处于领先地位,拥有独到的 TMR 传感器专业技术、强大的专利组合,以及大规模量产设备。凭借这些独特的优势,MDT 能够满足客户对产品的性能指标和上市时间的严格要求,从而极大地提升了客户的投资回报。MDT 精心打造了一个全方位的产品系列组合,以标准封装、定制封装,或者晶圆的方式提供 TMR 传感器芯片,同时也提供包括 TMR-GE04/05/08 齿轮编码器在内的具备完整功能、即时可用的传感器模组。”

TMR-GE04/05/08 齿轮编码器的主要特点:

- 增量式 A/B/Z 数字信号输出

- 每周期的细分倍数可编程至256细分

- 高达700kHz 的响应频率

- 对测量气隙和安装位置有较大容差

MDT 是首家将 TMR 技术的优势引入商用传感器市场的批量供应商。MDT 的 TMR 磁传感器具备超低功耗、超高灵敏度、超低噪声、大动态范围和卓越的温度稳定性等性能优点,弥补了霍尔效应、AMR 和 GMR 等现有磁传感器技术的局限性。MDT 在 TMR 开关传感器、TMR 角度传感器、TMR 线性传感器,和 TMR 齿轮传感器等产品系列提供 TMR 传感器芯片,同时在 TMR 磁图像传感器和新推出的 TMR 齿轮编码器产品系列提供完整的传感器模组。

目录
相关文章
|
机器学习/深度学习 存储 编解码
自编码器模型详解与实现(采用TensorFlow2实现)
自编码器的基本构建块是编码器和解码器。编码器负责将高维输入减少为一些低维潜(隐)变量。解码器是将隐变量转换回高维空间的模块。本文对自编码器的原理进行详解,同时使用tensorflow2实现自编码器。
2065 0
自编码器模型详解与实现(采用TensorFlow2实现)
|
开发工具 异构计算 内存技术
FPGA启动加载过程详解
FPGA启动加载过程详解
1579 0
|
机器学习/深度学习 自然语言处理 并行计算
【YOLOv8改进 -注意力机制】Mamba之MLLAttention :基于Mamba和线性注意力Transformer的模型
YOLOv8专栏探讨了该目标检测模型的创新改进,包括使用Mamba模型的线性注意力Transformer变体,称为MLLA。Mamba的成功关键在于遗忘门和块设计,MLLA结合了这些优点,提升了视觉任务的性能。文章提供全面分析,并提出MLLA模型,其在效率和准确性上超过多种视觉模型。论文和代码可在提供的链接中找到。MLLA Block的代码示例展示了如何整合关键组件以实现高效运算。更多配置详情见相关链接。
|
Docker 容器
Windows11中移动 WSL到 D 盘
Windows11中移动 WSL到 D 盘
709 0
C#基础③——类型转换(int转double、double转int、Convert)
不同数据类型间的转换,如:将int类型转换为string类型
|
机器学习/深度学习 编解码 数据可视化
Mamba入局遥感图像分割 | Samba: 首个基于SSM的遥感高分图像语义分割框架
Mamba入局遥感图像分割 | Samba: 首个基于SSM的遥感高分图像语义分割框架
400 3
|
人工智能 运维 安全
智能体(Agent)平台介绍
2023年11月9日,比尔盖茨先生发布了《人工智能即将彻底改变你使用计算机的方式》文章,详尽阐明了Agent(智能体)这个新一代智能应用的技术理念。在个人助理、卫生保健、教育、生产率、娱乐购物、科技等领域有着广泛的应用场景,对于开发者而言是个巨大的机会, 本篇文章尝试从系统化的角度解决构建Agent的问题,探讨Agent平台化的方案。
9809 2
智能体(Agent)平台介绍
|
机器学习/深度学习 数据采集 自然语言处理
[python][whl]python模块triton的whl文件下载地址汇总(1)
[python][whl]python模块triton的whl文件下载地址汇总(1)
|
XML 存储 JSON
技术笔记:Qt基础之配置文件(QSettings)
技术笔记:Qt基础之配置文件(QSettings)
1017 0
|
JavaScript Java Go
ANTLR快餐教程(1) - 有好多现成例子啊
前面介绍LLVM的第一篇中,我们介绍过,编译器的后端基本都可以通过LLVM来解决。 那么,前端我们如何处理呢?我们选择ANTLR。
4303 0