最高加速9倍!字节跳动开源8比特混合精度Transformer引擎(2)

简介: 最高加速9倍!字节跳动开源8比特混合精度Transformer引擎


量化策略


将一个浮点数矩阵量化为 int8 整数矩阵有很多方法,LightSeq 采用的是对称量化,即将正负数范围对称的浮点数区间等比例地映射到整数区间 [-127, 127] 上。


而实际上浮点数矩阵的数值范围通常并不对称,存在极少的离群值。如果直接按照离群值的范围来量化矩阵,会影响到量化后的精度,所以需要先对矩阵进行数值截断。


LightSeq 采用 PACT 方法进行截断[6],将截断的范围当作模型可学习的参数,然后利用 STE 算法去估计参数的梯度,并进行反向传播优化。根据实践经验,权重 weight 的初始截断范围设为[-1, 1],中间结果的初始截断范围设为[-16, 16],可以在大部分任务上达到最好的效果。最后经过截断范围和其他模型参数的联合优化,量化模型的效果可以达到基本无损。


梯度通信量化


针对分布式训练场景,LightSeq 推出了梯度量化压缩技术。即对浮点精度的梯度进行 int8 量化,以减少梯度通信的时间消耗,从而加速训练,这就是梯度通信量化(GCQ)。


如上图所示,梯度通信量化的主要流程如下:


  1. 计算每张卡上各自梯度的截断范围;
  2. 对截断范围执行 all-reduce max 操作;
  3. 每张卡使用统一的截断范围对各自梯度进行 int8 量化;
  4. 对 int8 梯度执行 all-reduce sum 操作;
  5. 每张卡对 all-reduce 后的梯度进行反量化,还原为浮点数梯度,并进行参数更新。


为了解决 int8 梯度在 all-reduce 过程中溢出的问题,LightSeq 首先将每张卡上的浮点数梯度除以卡数,再使用除之前的截断范围进行量化,最后进行 all-reduce 操作。这样每张卡上量化后的 int8 整数 all-reduce 完就不会溢出,但是单卡实际用于量化的比特数也因此而减少,所以目前方案在 2 机 8 卡效果几乎无损,但随着卡数的上涨,训练效果会有所下降。以 en2de 和 en2fr 翻译任务为例,在 4 机 8 卡上进行分布式量化训练,BLEU 值分别会下降 0.4 和 1.5 左右。未来 LightSeq 将会持续探索更好的方法来解决这一问题。


通用技术


除了上一章节中提到的量化技术以外,此次更新 LightSeq 还提出了几种通用的优化技术,不仅可以应用在量化模型中,也适用于其它所有精度模型的训练与推理。


算子融合


上图是 encoder 模块量化训练的计算图,LightSeq 将两次 GEMM 运算之间的所有操作融合成一个算子[7],减少了 kernel 调用的次数,因此减少了总的计算时间。


图中黄色矩形表示 int8 GEMM,绿色矩形表示 float GEMM。这里采用 float GEMM 是由于 shape 的限制,不适合使用 int8 GEMM 加速。红色箭头表示流动数据的类型是 int8,绿色箭头表示第二层 FFN 的 GEMM 输出是 int32 数据类型。int8 GEMM 输入输出的量化与反量化操作都被融合到了前后 kernel 里,这不仅可以减少数据搬运,还可以减小显存占用。


在推理时,LightSeq 还针对 decoder 做了优化。如上图所示,在计算 self-attention 时,注意力得分的维度是(batch size, 1, sequence length)。因此在计算 value 乘积时,可以不采用 GEMM 运算,而直接手写加权求和的算子,从而将图中虚线框中的计算融合成一个 kernel。


自动显存管理


模型量化引入了更复杂的张量类型和张量依赖关系,这给显存管理带来新的挑战。为此,LightSeq 设计了新的显存管理机制。如上图所示,主要包括以下过程:


  1. 训练启动前,根据每个算子的拓扑依赖关系,自动计算每个张量的生命周期及显存空间大小。其中,包含动态维度的张量按照此维度的最大量进行计算,例如机器翻译任务中的最大句长和最大 batch 句子数量。这些最大量在训练前已被指定;
  2. 张量确定生命周期和大小后,分析显存复用关系。其中,无生命周期重合的张量可以共用一片显存空间,所有显存空间都是无数据类型的,可以被分配到任意数据类型的张量上;
  3. 根据张量显存复用关系,申请多段显存空间,为每个张量分配实际的显存起止地址。


张量显存复用的分析,LightSeq 借鉴了论文 [3] 中提出的 Greedy by Size for Offset Calculation 方法,做了三个改进:


  1. 支持了整个训练过程的显存复用(forward/backward);
  2. 不同数据类型能做到显存复用(int8/fp16/fp32);
  3. 在多段显存空间上容纳所有张量,而非一段非常大的显存空间,这样能有效提升显存利用率。


自动 GEMM 调优


LightSeq 的 int8 GEMM 采用了 NVIDIA 的 cuBLASLt 库,这也是目前 NVIDIA 显卡上最为高效的矩阵运算库。但是输入数据的 shape 或者显卡不同的话,GEMM 所采用的最优配置(例如数据排布、GEMM 算法等等)也可能不同,因此需要进行自动选取。LightSeq 采取的自动调优方案如下:


  1. 在多种型号显卡上(例如 T4 和 A100)进行不同 shape 的 GEMM 最优配置搜索,并将结果保存到配置文件中,用户只需要下载即可;
  2. 模型初始化时,加载对应型号显卡的配置文件,解析并保存到键值对为 (shape, 最优配置) 的字典中。如果没有对应型号显卡的配置文件,或者没有需要的 GEMM shape,那么用户可以选择自己搜索并保存,或者直接使用默认配置;
  3. 模型前向或后向计算时,根据输入的 shape 在字典中寻找最优配置,然后进行 GEMM 计算。如果没有找到对应的 shape,那么直接采用默认的配置。


未来工作


未来 LightSeq 还将继续探索移动端的低精度量化、反向传播中梯度的量化、大模型量化等方向。


引用


[1] Wang, Xiaohui, et al. "LightSeq2: Accelerated training for transformer-based models on gpus." arXiv preprint arXiv:2110.05722 (2021).

[2] Micikevicius, Paulius, et al. "Mixed precision training." arXiv preprint arXiv:1710.03740 (2017).

[3] Pisarchyk, Yury, and Juhyun Lee. "Efficient memory management for deep neural net inference." arXiv preprint arXiv:2001.03288 (2020).

[4] Jacob, Benoit, et al. "Quantization and training of neural networks for efficient integer-arithmetic-only inference." Proceedings of the IEEE conference on computer vision and pattern recognition. 2018.

[5] Alistarh, Dan, et al. "QSGD: Communication-efficient SGD via gradient quantization and encoding." Advances in neural information processing systems 30 (2017).

[6] Choi, Jungwook, et al. "Pact: Parameterized clipping activation for quantized neural networks." arXiv preprint arXiv:1805.06085 (2018).

[7] Wang, Xiaohui, et al. "LightSeq: A high performance inference library for transformers." arXiv preprint arXiv:2010.13887 (2020).

相关文章
|
人工智能 缓存 并行计算
技术改变AI发展:Ada Lovelace架构解读及RTX 4090性能测试分析(系列三)
简介:随着人工智能(AI)的迅速发展,越来越多的应用需要巨大的GPU计算资源。Ada lovelace(后面简称Ada)是NVIDIA最新的图形处理器架构,随2022年9月20日发布的RTX 4090一起公布。
141979 62
技术改变AI发展:Ada Lovelace架构解读及RTX 4090性能测试分析(系列三)
|
5月前
|
机器学习/深度学习 人工智能 自然语言处理
ICLR 2025 | EDiT:一种基于 Local SGD 策略的大模型高效分布式训练方法
蚂蚁 AI Infra 团队在深度学习最核心之一的训练框架方向上持续投入与创新,实现了提升资源利用率、加速训练、提升训练稳定性等目标。我们提出的 EDiT 方法,即为其中一项工作。
|
5月前
|
人工智能 数据可视化 API
开箱即用的可视化AI应用编排工具 Langflow,可调用魔搭免费API作为tool
ModelScope 社区基于优秀的开源可视化AI应用编排工具 Langflow 搭建了创空间,以方便社区开发者基于社区开源模型及免费魔搭 API-Inference,快速创建Agent应用、RAG应用并将其部署为API服务。
623 14
|
8月前
|
存储 运维 安全
盘古分布式存储系统的稳定性实践
本文介绍了阿里云飞天盘古分布式存储系统的稳定性实践。盘古作为阿里云的核心组件,支撑了阿里巴巴集团的众多业务,确保数据高可靠性、系统高可用性和安全生产运维是其关键目标。文章详细探讨了数据不丢不错、系统高可用性的实现方法,以及通过故障演练、自动化发布和健康检查等手段保障生产安全。总结指出,稳定性是一项系统工程,需要持续迭代演进,盘古经过十年以上的线上锤炼,积累了丰富的实践经验。
590 7
IPv4内网与公IPv4地址范围
内网IPv4地址包括10.0.0.0/8(适用于大型组织)、172.16.0.0/12(适合中等规模网络)和192.168.0.0/16(常用于家庭或小型办公室)。公网IPv4地址分为Class A(大规模网络,如0.0.0.0-127.255.255.255),Class B(中等规模,128.0.0.0-191.255.255.255),Class C(小规模,192.0.0.0-223.255.255.255),Class D(多播,224.0.0.0-239.255.255.255)和Class E(实验用途,240.0.0.0-255.255.255.255)。
2482 2
|
缓存 Ubuntu Linux
在Linux中,如何进行系统更新和升级?
在Linux中,如何进行系统更新和升级?
|
编译器 C++
VS Code设置C++编译器路径
VS Code设置C++编译器路径
366 0
|
程序员 编译器 数据处理
汇编高手秘籍:解锁性能优化新境界,用汇编语言让你的程序飞起来!
【8月更文挑战第31天】汇编语言作为编程基石,其高效性能备受推崇。尽管现代软件开发更偏爱高级语言,但在性能要求极高的场景下,汇编优化仍不可或缺。本文通过示例代码介绍四种优化技巧:循环展开、寄存器分配、指令重排及SIMD指令使用,显著提升执行效率。同时强调分析性能瓶颈、测试优化效果及保持代码可读性的重要性,助力开发者在关键代码路径上实现性能突破。
571 0
|
消息中间件 弹性计算 运维
对比阿里云的SofaMQ与RocketMQ
对比阿里云的SofaMQ与RocketMQ
2055 2
|
弹性计算 虚拟化 异构计算
阿里云GPU服务器租用费用价格表(多配置报价)
阿里云GPU服务器租用费用价格表(多配置报价)
530 0