分类算法:决策树(ID3)

简介:

决策树是以实例为基础的归纳学习算法。 它从一组无次序、无规则的元组中推理出决策树表示形式的分类规则。它采用自顶向下的递归方式,在决策树的内部结点进行属性值的比较,并根据不同的属性值从该结点向下分支,叶结点是要学习划分的类。从根到叶结点的一条路径就对应着一条合取规则,整个决策树就对应着一组析取表达式规则。
一棵决策树由以下3类结点构成:

  • 根结点
  • 内部结点(决策结点)
  • 叶结点

其中,根结点和内部结点都对应着我们要进行分类的属性集中的一个属性,而叶结点是分类中的类标签的集合。如果一棵决策树构建起来,其分类精度满足我们的实际需要,我们就可以使用它来进行分类新的数据集。
这棵决策树就是我们根据已有的训练数据集训练出来的分类模型,可以通过使用测试数据集来对分类模型进行验证,经过调整模型直到达到我们所期望的分类精度,然后就可以使用该模型来预测实际应用中的新数据,对新的数据进行分类。
通过上面描述,我们已经能够感觉出,在构建决策树的过程中,如果选择其中的内部结点(决策结点),才能够使我们的决策树得到较高的分类精度,这是难点。其中,ID3算法主要是给出了通过信息增益的方式来进行决策结点的选择。
首先,看一下如何计算信息熵。熵是不确定性的度量指标,假如事件A的全概率划分是(A1,A2,…,An),每部分发生的概率是(p1,p2,…,pn),那么信息熵通过如下公式计算:

1 Info(A) = Entropy(p1,p2,...,pn) = -p1 * log2(p1) -p2 * log2(p2) - ... -pn * log2(pn)

我们以一个很典型被引用过多次的训练数据集D为例,来说明ID3算法如何计算信息增益并选择决策结点,训练集如图所示:

上面的训练集有4个属性,即属性集合A={OUTLOOK, TEMPERATURE, HUMIDITY, WINDY};而类标签有2个,即类标签集合C={Yes, No},分别表示适合户外运动和不适合户外运动,其实是一个二分类问题。
数据集D包含14个训练样本,其中属于类别“Yes”的有9个,属于类别“No”的有5个,则计算其信息熵:

1 Info(D) = -9/14 * log2(9/14) - 5/14 * log2(5/14) = 0.940

下面对属性集中每个属性分别计算信息熵,如下所示:

  • OUTLOOK属性

OUTLOOK属性中,有3个取值:Sunny、Overcast和Rainy,样本分布情况如下:
类别为Yes时,Sunny有2个样本;类别为No时,Sunny有3个样本。
类别为Yes时,Overcast有4个样本;类别为No时,Overcast有0个样本。
类别为Yes时,Rainy有3个样本;类别为No时,Rainy有2个样本。
从而可以计算OUTLOOK属性的信息熵:

1 Info(OUTLOOK) = 5/14 * [- 2/5 * log2(2/5) – 3/5 * log2(3/5)] + 4/14 * [ - 4/4 * log2(4/4) - 0/4 * log2(0/4)] + 5/14 * [ - 3/5 * log2(3/5) – 2/5 * log2(2/5)] = 0.694
  • TEMPERATURE属性

TEMPERATURE属性中,有3个取值:Hot、Mild和Cool,样本分布情况如下:
类别为Yes时,Hot有2个样本;类别为No时,Hot有2个样本。
类别为Yes时,Mild有4个样本;类别为No时,Mild有2个样本。
类别为Yes时,Cool有3个样本;类别为No时,Cool有1个样本。

1 Info(TEMPERATURE) = 4/14 * [- 2/4 * log2(2/4) – 2/4 * log2(2/4)] + 6/14 * [ - 4/6 * log2(4/6) - 2/6 * log2(2/6)] + 4/14 * [ - 3/4 * log2(3/4) – 1/4 * log2(1/4)] = 0.911
  • HUMIDITY属性

TEMPERATURE属性中,有2个取值:High和Normal,样本分布情况如下:
类别为Yes时,High有3个样本;类别为No时,High有4个样本。
类别为Yes时,Normal有6个样本;类别为No时,Normal有1个样本。

1 Info(HUMIDITY) = 7/14 * [- 3/7 * log2(3/7) – 4/7 * log2(4/7)] + 7/14 * [ - 6/7 * log2(6/7) - 1/7 * log2(1/7)] = 0.789
  • WINDY属性

WINDY属性中,有2个取值:True和False,样本分布情况如下:
类别为Yes时,True有3个样本;类别为No时,True有3个样本。
类别为Yes时,False有6个样本;类别为No时,False有2个样本。

1 Info(WINDY) = 6/14 * [- 3/6 * log2(3/6) – 3/6 * log2(3/6)] + 8/14 * [ - 6/8 * log2(6/8) - 2/8 * log2(2/8)] = 0.892

根据上面的数据,我们可以计算选择第一个根结点所依赖的信息增益值,计算如下所示:

1 Gain(OUTLOOK) = Info(D) - Info(OUTLOOK) = 0.940 - 0.694 = 0.246
2 Gain(TEMPERATURE) = Info(D) - Info(TEMPERATURE) = 0.940 - 0.911 = 0.029
3 Gain(HUMIDITY) = Info(D) - Info(HUMIDITY) = 0.940 - 0.789 = 0.151
4 Gain(WINDY) = Info(D) - Info(WINDY) = 0.940 - 0.892 = 0.048

根据上面对各个属性的信息增益值进行比较,选出信息增益值最大的属性:

1 Max(Gain(OUTLOOK), Gain(TEMPERATURE), Gain(HUMIDITY), Gain(WINDY)) = Gain(OUTLOOK)

所以,第一个根结点我们选择属性OUTLOOK。

继续执行上述信息熵和信息增益的计算,最终能够选出其他的决策结点,从而建立一棵决策树,这就是我们训练出来的分类模型。基于此模型,可以使用一组测试数据及进行模型的验证,最后能够对新数据进行预测。

ID3算法的优点是:算法的理论清晰,方法简单,学习能力较强。
ID3算法的缺点是:只对比较小的数据集有效,且对噪声比较敏感,当训练数据集加大时,决策树可能会随之改变。

目录
相关文章
|
3月前
|
存储 机器学习/深度学习 监控
网络管理监控软件的 C# 区间树性能阈值查询算法
针对网络管理监控软件的高效区间查询需求,本文提出基于区间树的优化方案。传统线性遍历效率低,10万条数据查询超800ms,难以满足实时性要求。区间树以平衡二叉搜索树结构,结合节点最大值剪枝策略,将查询复杂度从O(N)降至O(logN+K),显著提升性能。通过C#实现,支持按指标类型分组建树、增量插入与多维度联合查询,在10万记录下查询耗时仅约2.8ms,内存占用降低35%。测试表明,该方案有效解决高负载场景下的响应延迟问题,助力管理员快速定位异常设备,提升运维效率与系统稳定性。
248 4
|
6月前
|
监控 算法 安全
基于 C# 基数树算法的网络屏幕监控敏感词检测技术研究
随着数字化办公和网络交互迅猛发展,网络屏幕监控成为信息安全的关键。基数树(Trie Tree)凭借高效的字符串处理能力,在敏感词检测中表现出色。结合C#语言,可构建高时效、高准确率的敏感词识别模块,提升网络安全防护能力。
156 2
|
8月前
|
存储 机器学习/深度学习 算法
KMP、Trie树 、AC自动机‌ ,三大算法实现 优雅 过滤 netty 敏感词
KMP、Trie树 、AC自动机‌ ,三大算法实现 优雅 过滤 netty 敏感词
KMP、Trie树 、AC自动机‌ ,三大算法实现 优雅 过滤 netty  敏感词
|
8月前
|
监控 算法 数据处理
基于 C++ 的 KD 树算法在监控局域网屏幕中的理论剖析与工程实践研究
本文探讨了KD树在局域网屏幕监控中的应用,通过C++实现其构建与查询功能,显著提升多维数据处理效率。KD树作为一种二叉空间划分结构,适用于屏幕图像特征匹配、异常画面检测及数据压缩传输优化等场景。相比传统方法,基于KD树的方案检索效率提升2-3个数量级,但高维数据退化和动态更新等问题仍需进一步研究。未来可通过融合其他数据结构、引入深度学习及开发增量式更新算法等方式优化性能。
215 17
|
8月前
|
存储 监控 算法
局域网上网记录监控的 C# 基数树算法高效检索方案研究
在企业网络管理与信息安全领域,局域网上网记录监控是维护网络安全、规范网络行为的关键举措。随着企业网络数据量呈指数级增长,如何高效存储和检索上网记录数据成为亟待解决的核心问题。基数树(Trie 树)作为一种独特的数据结构,凭借其在字符串处理方面的卓越性能,为局域网上网记录监控提供了创新的解决方案。本文将深入剖析基数树算法的原理,并通过 C# 语言实现的代码示例,阐述其在局域网上网记录监控场景中的具体应用。
194 7
|
10月前
|
人工智能 算法 语音技术
Video-T1:视频生成实时手术刀!清华腾讯「帧树算法」终结闪烁抖动
清华大学与腾讯联合推出的Video-T1技术,通过测试时扩展(TTS)和Tree-of-Frames方法,显著提升视频生成的连贯性与文本匹配度,为影视制作、游戏开发等领域带来突破性解决方案。
356 4
Video-T1:视频生成实时手术刀!清华腾讯「帧树算法」终结闪烁抖动
|
7月前
|
机器学习/深度学习 算法 搜索推荐
决策树算法如何读懂你的购物心理?一文看懂背后的科学
"你为什么总能收到刚好符合需求的商品推荐?你有没有好奇过,为什么刚浏览过的商品就出现了折扣通知?
237 0
|
10月前
|
算法 Java
算法系列之数据结构-Huffman树
Huffman树(哈夫曼树)又称最优二叉树,是一种带权路径长度最短的二叉树,常用于信息传输、数据压缩等方面。它的构造基于字符出现的频率,通过将频率较低的字符组合在一起,最终形成一棵树。在Huffman树中,每个叶节点代表一个字符,而每个字符的编码则是从根节点到叶节点的路径所对应的二进制序列。
323 3
 算法系列之数据结构-Huffman树
|
存储 算法 测试技术
【C++数据结构——树】二叉树的遍历算法(头歌教学实验平台习题) 【合集】
本任务旨在实现二叉树的遍历,包括先序、中序、后序和层次遍历。首先介绍了二叉树的基本概念与结构定义,并通过C++代码示例展示了如何定义二叉树节点及构建二叉树。接着详细讲解了四种遍历方法的递归实现逻辑,以及层次遍历中队列的应用。最后提供了测试用例和预期输出,确保代码正确性。通过这些内容,帮助读者理解并掌握二叉树遍历的核心思想与实现技巧。
578 3
|
机器学习/深度学习 算法 Python
随机森林算法是一种强大的集成学习方法,通过构建多个决策树并综合其结果进行预测。
随机森林算法是一种强大的集成学习方法,通过构建多个决策树并综合其结果进行预测。本文详细介绍了随机森林的工作原理、性能优势、影响因素及调优方法,并提供了Python实现示例。适用于分类、回归及特征选择等多种应用场景。
891 7