分类算法:决策树(ID3)

简介:

决策树是以实例为基础的归纳学习算法。 它从一组无次序、无规则的元组中推理出决策树表示形式的分类规则。它采用自顶向下的递归方式,在决策树的内部结点进行属性值的比较,并根据不同的属性值从该结点向下分支,叶结点是要学习划分的类。从根到叶结点的一条路径就对应着一条合取规则,整个决策树就对应着一组析取表达式规则。
一棵决策树由以下3类结点构成:

  • 根结点
  • 内部结点(决策结点)
  • 叶结点

其中,根结点和内部结点都对应着我们要进行分类的属性集中的一个属性,而叶结点是分类中的类标签的集合。如果一棵决策树构建起来,其分类精度满足我们的实际需要,我们就可以使用它来进行分类新的数据集。
这棵决策树就是我们根据已有的训练数据集训练出来的分类模型,可以通过使用测试数据集来对分类模型进行验证,经过调整模型直到达到我们所期望的分类精度,然后就可以使用该模型来预测实际应用中的新数据,对新的数据进行分类。
通过上面描述,我们已经能够感觉出,在构建决策树的过程中,如果选择其中的内部结点(决策结点),才能够使我们的决策树得到较高的分类精度,这是难点。其中,ID3算法主要是给出了通过信息增益的方式来进行决策结点的选择。
首先,看一下如何计算信息熵。熵是不确定性的度量指标,假如事件A的全概率划分是(A1,A2,…,An),每部分发生的概率是(p1,p2,…,pn),那么信息熵通过如下公式计算:

1 Info(A) = Entropy(p1,p2,...,pn) = -p1 * log2(p1) -p2 * log2(p2) - ... -pn * log2(pn)

我们以一个很典型被引用过多次的训练数据集D为例,来说明ID3算法如何计算信息增益并选择决策结点,训练集如图所示:

上面的训练集有4个属性,即属性集合A={OUTLOOK, TEMPERATURE, HUMIDITY, WINDY};而类标签有2个,即类标签集合C={Yes, No},分别表示适合户外运动和不适合户外运动,其实是一个二分类问题。
数据集D包含14个训练样本,其中属于类别“Yes”的有9个,属于类别“No”的有5个,则计算其信息熵:

1 Info(D) = -9/14 * log2(9/14) - 5/14 * log2(5/14) = 0.940

下面对属性集中每个属性分别计算信息熵,如下所示:

  • OUTLOOK属性

OUTLOOK属性中,有3个取值:Sunny、Overcast和Rainy,样本分布情况如下:
类别为Yes时,Sunny有2个样本;类别为No时,Sunny有3个样本。
类别为Yes时,Overcast有4个样本;类别为No时,Overcast有0个样本。
类别为Yes时,Rainy有3个样本;类别为No时,Rainy有2个样本。
从而可以计算OUTLOOK属性的信息熵:

1 Info(OUTLOOK) = 5/14 * [- 2/5 * log2(2/5) – 3/5 * log2(3/5)] + 4/14 * [ - 4/4 * log2(4/4) - 0/4 * log2(0/4)] + 5/14 * [ - 3/5 * log2(3/5) – 2/5 * log2(2/5)] = 0.694
  • TEMPERATURE属性

TEMPERATURE属性中,有3个取值:Hot、Mild和Cool,样本分布情况如下:
类别为Yes时,Hot有2个样本;类别为No时,Hot有2个样本。
类别为Yes时,Mild有4个样本;类别为No时,Mild有2个样本。
类别为Yes时,Cool有3个样本;类别为No时,Cool有1个样本。

1 Info(TEMPERATURE) = 4/14 * [- 2/4 * log2(2/4) – 2/4 * log2(2/4)] + 6/14 * [ - 4/6 * log2(4/6) - 2/6 * log2(2/6)] + 4/14 * [ - 3/4 * log2(3/4) – 1/4 * log2(1/4)] = 0.911
  • HUMIDITY属性

TEMPERATURE属性中,有2个取值:High和Normal,样本分布情况如下:
类别为Yes时,High有3个样本;类别为No时,High有4个样本。
类别为Yes时,Normal有6个样本;类别为No时,Normal有1个样本。

1 Info(HUMIDITY) = 7/14 * [- 3/7 * log2(3/7) – 4/7 * log2(4/7)] + 7/14 * [ - 6/7 * log2(6/7) - 1/7 * log2(1/7)] = 0.789
  • WINDY属性

WINDY属性中,有2个取值:True和False,样本分布情况如下:
类别为Yes时,True有3个样本;类别为No时,True有3个样本。
类别为Yes时,False有6个样本;类别为No时,False有2个样本。

1 Info(WINDY) = 6/14 * [- 3/6 * log2(3/6) – 3/6 * log2(3/6)] + 8/14 * [ - 6/8 * log2(6/8) - 2/8 * log2(2/8)] = 0.892

根据上面的数据,我们可以计算选择第一个根结点所依赖的信息增益值,计算如下所示:

1 Gain(OUTLOOK) = Info(D) - Info(OUTLOOK) = 0.940 - 0.694 = 0.246
2 Gain(TEMPERATURE) = Info(D) - Info(TEMPERATURE) = 0.940 - 0.911 = 0.029
3 Gain(HUMIDITY) = Info(D) - Info(HUMIDITY) = 0.940 - 0.789 = 0.151
4 Gain(WINDY) = Info(D) - Info(WINDY) = 0.940 - 0.892 = 0.048

根据上面对各个属性的信息增益值进行比较,选出信息增益值最大的属性:

1 Max(Gain(OUTLOOK), Gain(TEMPERATURE), Gain(HUMIDITY), Gain(WINDY)) = Gain(OUTLOOK)

所以,第一个根结点我们选择属性OUTLOOK。

继续执行上述信息熵和信息增益的计算,最终能够选出其他的决策结点,从而建立一棵决策树,这就是我们训练出来的分类模型。基于此模型,可以使用一组测试数据及进行模型的验证,最后能够对新数据进行预测。

ID3算法的优点是:算法的理论清晰,方法简单,学习能力较强。
ID3算法的缺点是:只对比较小的数据集有效,且对噪声比较敏感,当训练数据集加大时,决策树可能会随之改变。

目录
相关文章
|
3月前
|
存储 算法 C语言
"揭秘C语言中的王者之树——红黑树:一场数据结构与算法的华丽舞蹈,让你的程序效率飙升,直击性能巅峰!"
【8月更文挑战第20天】红黑树是自平衡二叉查找树,通过旋转和重着色保持平衡,确保高效执行插入、删除和查找操作,时间复杂度为O(log n)。本文介绍红黑树的基本属性、存储结构及其C语言实现。红黑树遵循五项基本规则以保持平衡状态。在C语言中,节点包含数据、颜色、父节点和子节点指针。文章提供了一个示例代码框架,用于创建节点、插入节点并执行必要的修复操作以维护红黑树的特性。
102 1
|
11天前
|
算法
树的遍历算法有哪些?
不同的遍历算法适用于不同的应用场景。深度优先搜索常用于搜索、路径查找等问题;广度优先搜索则在图的最短路径、层次相关的问题中较为常用;而二叉搜索树的遍历在数据排序、查找等方面有重要应用。
20 2
|
1月前
|
机器学习/深度学习 算法 Python
探索机器学习中的决策树算法:从理论到实践
【10月更文挑战第5天】本文旨在通过浅显易懂的语言,带领读者了解并实现一个基础的决策树模型。我们将从决策树的基本概念出发,逐步深入其构建过程,包括特征选择、树的生成与剪枝等关键技术点,并以一个简单的例子演示如何用Python代码实现一个决策树分类器。文章不仅注重理论阐述,更侧重于实际操作,以期帮助初学者快速入门并在真实数据上应用这一算法。
|
16天前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的决策树算法
【10月更文挑战第29天】本文将深入浅出地介绍决策树算法,一种在机器学习中广泛使用的分类和回归方法。我们将从基础概念出发,逐步深入到算法的实际应用,最后通过一个代码示例来直观展示如何利用决策树解决实际问题。无论你是机器学习的初学者还是希望深化理解的开发者,这篇文章都将为你提供有价值的见解和指导。
|
1月前
|
存储 算法 关系型数据库
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
这篇文章主要介绍了多路查找树的基本概念,包括二叉树的局限性、多叉树的优化、B树及其变体(如2-3树、B+树、B*树)的特点和应用,旨在帮助读者理解这些数据结构在文件系统和数据库系统中的重要性和效率。
20 0
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
|
2月前
|
大数据 UED 开发者
实战演练:利用Python的Trie树优化搜索算法,性能飙升不是梦!
在数据密集型应用中,高效搜索算法至关重要。Trie树(前缀树/字典树)通过优化字符串处理和搜索效率成为理想选择。本文通过Python实战演示Trie树构建与应用,显著提升搜索性能。Trie树利用公共前缀减少查询时间,支持快速插入、删除和搜索。以下为简单示例代码,展示如何构建及使用Trie树进行搜索与前缀匹配,适用于自动补全、拼写检查等场景,助力提升应用性能与用户体验。
55 2
|
1月前
|
存储 算法
数据结构与算法学习十六:树的知识、二叉树、二叉树的遍历(前序、中序、后序、层次)、二叉树的查找(前序、中序、后序、层次)、二叉树的删除
这篇文章主要介绍了树和二叉树的基础知识,包括树的存储方式、二叉树的定义、遍历方法(前序、中序、后序、层次遍历),以及二叉树的查找和删除操作。
24 0
|
1月前
|
存储 算法 Java
数据结构和算法--分段树
数据结构和算法--分段树
16 0
|
2月前
|
机器学习/深度学习 算法 数据挖掘
决策树算法大揭秘:Python让你秒懂分支逻辑,精准分类不再难
【9月更文挑战第12天】决策树算法作为机器学习领域的一颗明珠,凭借其直观易懂和强大的解释能力,在分类与回归任务中表现出色。相比传统统计方法,决策树通过简单的分支逻辑实现了数据的精准分类。本文将借助Python和scikit-learn库,以鸢尾花数据集为例,展示如何使用决策树进行分类,并探讨其优势与局限。通过构建一系列条件判断,决策树不仅模拟了人类决策过程,还确保了结果的可追溯性和可解释性。无论您是新手还是专家,都能轻松上手,享受机器学习的乐趣。
47 9