优雅地使用pt-archiver进行数据归档

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
日志服务 SLS,月写入数据量 50GB 1个月
简介: 一、引言 最近由于业务需求,需要将公有云RDS(业务库)的大表数据归档至私有云MySQL(历史库),以缩减公有云RDS的体积和成本。 那么问题来了,数据归档的方式有n种,选择哪种呢?经过一番折腾,发现使用percona的pt-archiver就可以轻松并优雅地对MySQL进行数据归档。
7317b2bf9c910bcf1ecb7c629ead4ac2ad8d6df5

一、引言

最近由于业务需求,需要将公有云RDS(业务库)的大表数据归档至私有云MySQL(历史库),以缩减公有云RDS的体积和成本。

那么问题来了,数据归档的方式有n种,选择哪种呢?经过一番折腾,发现使用percona的pt-archiver就可以轻松并优雅地对MySQL进行数据归档。

待我娓娓道来~

1.1 pt-archive是啥

属于大名鼎鼎的percona工具集的一员,是归档MySQL大表数据的最佳轻量级工具之一。

注意,相当轻,相当方便简单。

1.2 pt-archive能干啥

  • 清理线上过期数据;
  • 导出线上数据,到线下数据作处理;
  • 清理过期数据,并把数据归档到本地归档表中,或者远端归档服务器。

二、基本信息

2.1 MySQL环境

0943088ab6ea0b21de9535ace36fbe33c85b9dff

2.2 pt-archiver信息

a503ee9975545f14614ba196999d1767ec516057

2.3 归档表信息

aca6666fb35f4edd98f881c77e5b05b78ad84a9d

注意:pt-archiver操作的表必须有主键

d4c8f64a3e0ada4a2210dd5c690fa60663554d00

三、模拟场景

3.1 场景1-1:全表归档,不删除原表数据,非批量插入


pt-archiver \
--source h=10.73.129.187,P=3306,u=backup_user,p='xxx',D=test123,t=c1 \
--dest h=10.73.129.188,P=3306,u=backup_user,p='xxx',D=test123,t=c1 \
--charset=UTF8 --where '1=1' --progress 10000 --limit=10000 --txn-size 10000 --statistics --no-delete

f522591bb4ee06259c6c2b60eff97ada10d5f15d

3.2 场景1-2:全表归档,不删除原表数据,批量插入

pt-archiver \
--source h=10.73.129.187,P=3306,u=backup_user,p='xxx',D=test123,t=c1 \
--dest h=10.73.129.188,P=3306,u=backup_user,p='xxx',D=test123,t=c1 \
--charset=UTF8 --where '1=1' --progress 10000 --limit=10000 --txn-size 10000 --bulk-insert --bulk-delete --statistics --no-delete

ae7bb93984172b6abfb9e11224de271fc61ff093

3.3 场景2-1:全表归档,删除原表数据,非批量插入,非批量删除

pt-archiver \
--source h=10.73.129.187,P=3306,u=backup_user,p='xxx',D=test123,t=c1 \
--dest h=10.73.129.188,P=3306,u=backup_user,p='xxx',D=test123,t=c1 \
--charset=UTF8 --where '1=1' --progress 10000 --limit=10000 --txn-size 10000 --statistics --purge

d50354a4cf8086406b7fe1d9eefbe17debbd1700

3.4 场景2-2:全表归档,删除原表数据,批量插入,批量删除

pt-archiver \
--source h=10.73.129.187,P=3306,u=backup_user,p='xxx',,D=test123,t=c1 \
--dest h=10.73.129.188,P=3306,u=backup_user,p='xxx',D=test123,t=c1 \
--charset=UTF8 --where '1=1' --progress 10000 --limit=10000 --txn-size 10000 --bulk-insert --bulk-delete --statistics --purge


d98ed12f1a0deb91147e8830b7e7dc63afdf07f8

四、小结

4.1 性能对比

通过下表可以看出,批量操作和非批量操作的性能差距非常明显,批量操作花费时间为非批量操作的十分之一左右。

68d0ecbe4dd224e4f8c141fa8b5bc4afe3cf3cd1

场景2-1:全表归档,删除原表数据,非批量插入,非批量删除4.2 general log分析

  • 从日志看起来,源库的查询和目标库的插入有先后顺序
  • 从日志看起来,目标库的插入和源库的删除,并无先后顺序。在特定条件下,万一目标库插入失败,源库删除成功,咋搞?感觉这里并不十分严谨
  • 删除采用DELETE FROM TABLE WHERE ... ,每次删除一行数据
  • 插入采用INSERT INTO TABLE VALUES('...'),每次插入一行数据

源库general log:

  1. set autocommit=0
  2. 批量查询(对应参数limit)
SELECT /*!40001 SQL_NO_CACHE */ `uuid` FORCE 

INDEX(`PRIMARY`) WHERE (1=1) AND ((`uuid` >= '266431')) 

ORDER BY `uuid` LIMIT 10000

3. 逐行删除

DELETE FROM `test123`.`c1` WHERE (`uuid` = '000002f0d9374c56ac456d76a68219b4')

4. COMMIT(对应参数--txn-size,操作数量达到--txn-size,则commit)

目标库general log:

  1. set autocommit=0
  2. 逐行插入
INSERT INTO `test123`.`c1`(`uuid`) VALUES ('0436dcf30350428c88e3ae6045649659')

3. COMMIT(对应参数--txn-size,操作数量达到--txn-size,则commit)

场景2-2:全表归档,删除原表数据,批量插入,批量删除

  • 从日志看起来,源库的批量查询和目标库的批量插入有先后顺序
  • 从日志看起来,目标库的批量插入和源库的批量删除,并无先后顺序。
  • 批量删除采用DELETE FROM TABLE WHERE ... LIMIT 10000
  • 批量插入采用LOAD DATA LOCAL INFILE 'file' INTO TABLE ...

源库:

  1. set autocommit=0
  2. 批量查询(对应limit参数)
SELECT /*!40001 SQL_NO_CACHE */ `uuid` FORCE 

INDEX(`PRIMARY`) WHERE (1=1) AND ((`uuid` >= '266431')) 

ORDER BY `uuid` LIMIT 10000

3. 批量删除

DELETE FROM `test123`.`c1` WHERE (((`uuid` >= '266432'))) AND (((`uuid` <= '273938'))) AND (1=1) LIMIT 10000

4. COMMIT(对应参数--txn-size,操作数量达到--txn-size,则commit)

目标库:

  1. set autocommit=0
  2. 批量插入
LOAD DATA LOCAL INFILE '/tmp/vkKXnc1VVApt-archiver' INTO TABLE `test123`.`c1`CHARACTER SET UTF8(`uuid`)

3. COMMIT(对应参数--txn-size,操作数量达到--txn-size,则commit)

五、附录

常用参数

a2a6fa0100cd34c226f95c9649e9bdbb628fd115


原文发布时间为:2017-11-28

本文作者:蓝剑锋@知数堂

本文来自云栖社区合作伙伴“老叶茶馆”,了解相关信息可以关注“老叶茶馆”微信公众号

相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
7月前
ApacheHudi Archive(归档)实现分析
ApacheHudi Archive(归档)实现分析
88 0
|
关系型数据库 MySQL OLTP
使用pt-archiver工具进行MySQL数据库迁移
pt-archiver是Percona-Toolkit工具集中的一个组件,可以用于对MySQL表数据进行归档和清除。
829 0
使用pt-archiver工具进行MySQL数据库迁移
|
SQL Oracle 关系型数据库
通过Snapshot Control File 恢复控制文件
大家好! 今天AningDBA和大家分享的是通过rman 快照控制文件恢复控制文件的方法: 我今天测试使用的oracle版本是10.2.01 由于版本问题,实验结果可能会存在差异。
1017 0