1.6. 渲染管线 Processing Pipeline

简介: 1.6. 渲染管线 Processing Pipeline For specifying the behavior of OpenGL, the various operations are defined to be applied in a particular order, s...

1.6. 渲染管线 Processing Pipeline


For specifying the behavior of OpenGL, the various operations are defined to be applied in a

particular order, so we can also think of OpenGL as a GRAPHICS PROCESSING PIPELINE.

Let's start by looking at a block diagram of how OpenGL was defined up through OpenGL 1.5.

Figure 1.1 is a diagram of the so-called FIXED FUNCTIONALITY of OpenGL. This diagram shows the

fundamentals of how OpenGL has worked since its inception and is a simplified representation

of how OpenGL still works. It shows the main features of the OpenGL pipeline for the purposes

of this overview. Some new features were added to OpenGL in versions 1.1 through 1.5, but

the basic architecture of OpenGL remained unchanged until OpenGL 2.0. We use the term fixed

functionality because every OpenGL implementation is required to have the same functionality

and a result that is consistent with the OpenGL specification for a given set of inputs. Both the

set of operations and the order in which they occur are defined (fixed) by the OpenGL

specification.

Figure 1.1. Overview of OpenGL operation

[View full size image]


It is important to note that OpenGL implementations are not required to match precisely the

order of operations shown in Figure 1.1. Implementations are free to modify the order of

operations as long as the rendering results are consistent with the OpenGL specification. Many

innovative software and hardware architectures have been designed to implement OpenGL, and

most block diagrams of those implementations look nothing like Figure 1.1. However, the

diagram does ground our discussion of the way the rendering process appears to work in

OpenGL, even if the underlying implementation does things a bit differently.


目录
相关文章
|
Linux 开发工具 git
10 推荐免费 Git 仓库
Git 免费仓库 Gitee 开源中国-基于 Git 的代码托管和研发协作平台【推荐】 https://gitee.com/
2259 0
10 推荐免费 Git 仓库
|
12月前
|
数据采集 存储 监控
CDGA|数据治理:让数据与业务伴生的实践路径
在数据驱动的时代,数据已成为企业宝贵资产,蕴含推动业务增长与创新的无限可能。数据治理通过科学策略挖掘、整合、保护数据,成为企业数字化转型的核心驱动力。本文阐述了数据治理的定义、重要性及其实践路径,强调跨部门协作与全员参与,确保数据质量、安全及合规性,支持企业战略目标实现。通过明确数据战略、建立管理体系、推动数据共享和持续优化,数据治理助力企业实现数据与业务的伴生共长。
1091 0
|
人工智能 搜索推荐 安全
AI Agent与具象智能的融合:数字化转型的新趋势
【1月更文挑战第14天】AI Agent与具象智能的融合:数字化转型的新趋势
489 4
AI Agent与具象智能的融合:数字化转型的新趋势
|
SpringCloudAlibaba 负载均衡 Java
【二】SpringCloud Alibaba之Nacos整合篇(配置负载均衡)
【二】SpringCloud Alibaba之Nacos整合篇(配置负载均衡)
1778 0
|
11天前
|
存储 关系型数据库 分布式数据库
PostgreSQL 18 发布,快来 PolarDB 尝鲜!
PostgreSQL 18 发布,PolarDB for PostgreSQL 全面兼容。新版本支持异步I/O、UUIDv7、虚拟生成列、逻辑复制增强及OAuth认证,显著提升性能与安全。PolarDB-PG 18 支持存算分离架构,融合海量弹性存储与极致计算性能,搭配丰富插件生态,为企业提供高效、稳定、灵活的云数据库解决方案,助力企业数字化转型如虎添翼!
|
9天前
|
存储 人工智能 搜索推荐
终身学习型智能体
当前人工智能前沿研究的一个重要方向:构建能够自主学习、调用工具、积累经验的小型智能体(Agent)。 我们可以称这种系统为“终身学习型智能体”或“自适应认知代理”。它的设计理念就是: 不靠庞大的内置知识取胜,而是依靠高效的推理能力 + 动态获取知识的能力 + 经验积累机制。
342 130
|
9天前
|
存储 人工智能 Java
AI 超级智能体全栈项目阶段二:Prompt 优化技巧与学术分析 AI 应用开发实现上下文联系多轮对话
本文讲解 Prompt 基本概念与 10 个优化技巧,结合学术分析 AI 应用的需求分析、设计方案,介绍 Spring AI 中 ChatClient 及 Advisors 的使用。
429 130
AI 超级智能体全栈项目阶段二:Prompt 优化技巧与学术分析 AI 应用开发实现上下文联系多轮对话