SQL性能调优实践——SELECT COUNT

简介: 最近想深入学习SQL,在网上搜索到一些SQL 优化的资料要么是张冠李戴,Oracle 优化的资料硬是弄成啦MS SQL 优化的资料,而且被很多人转载,收藏,有些要么有些含糊不清,好像是那么回事,也没经过验证,实践出真知!下面是我对SELECT COUNT(*), SELECT COUNT(1),SELECT COUNT (0), SELECT COUNT(Field)等孰优孰劣的测试结果,如果测试方法有什么不足,也希望大家给点建议。

最近想深入学习SQL,在网上搜索到一些SQL 优化的资料要么是张冠李戴,Oracle 优化的资料硬是弄成啦MS SQL 优化的资料,而且被很多人转载,收藏,有些要么有些含糊不清,好像是那么回事,也没经过验证,实践出真知!下面是我对SELECT COUNT(*) SELECT COUNT(1)SELECT COUNT (0), SELECT COUNT(Field)等孰优孰劣的测试结果,如果测试方法有什么不足,也希望大家给点建议。

 

首先我们来看看测试的机器、以及开发环境吧:双核处理器 T6670  2G DDR2的内存 数据版本如下图所示:

 

 然后建一个简单的测试表

CREATE TABLE Employee
(
    [EmployeeID]        INT IDENTITY(1,1),  --雇员ID
    [EmployeeName]      NVARCHAR(20)     ,  --雇员姓名
     [SEX]               BIT              ,  --性别
     [Department]        NVARCHAR(20)     ,  --部门
     CONSTRAINT [PK_Employee_ID_Name] PRIMARY KEY (EmployeeID, EmployeeName) 
)
 
--插入一百万数据
 
DECLARE @Index INT;
SET @Index = 1;
WHILE @Index < 1000000
BEGIN
    INSERT INTO Employee
    VALUES('Employee' + STR(@Index), '0', '技术部门');
    
    SET @Index = @Index + 1;
END
 
--建立非聚集索引
CREATE INDEX IDX_Employee_Department ON Employee([Department]);
 

好,到目前为止我们已经把测试用的表、数据都弄好啦,接下来我们来看看执行一次SELECT COUNT 的使用时间

Code Snippet
  1. DBCC DROPCLEANBUFFERS;
  2.  
  3. DBCC FREEPROCCACHE;
  4.  
  5. SET STATISTICS TIME ON;
  6.  
  7. SELECT COUNT(0) FROM Employee
  8.  
  9. SET STATISTICS TIME OFF;

 

我们会得到下面的输出结果

DBCC 执行完毕。如果DBCC 输出了错误信息,请与系统管理员联系。

DBCC 执行完毕。如果DBCC 输出了错误信息,请与系统管理员联系。

 

SQL Server 执行时间:

   CPU 时间= 219 毫秒,占用时间= 1033 毫秒。 

接下来我们来看看各种Count的实际执行计划,截图如下

 

我很纳闷为什么执行计划都是一样的,希望有高手能解答。

接下来,那么我们把上面的脚本执行10,把每次得到的数据记录下来,然后我们依次用

SELECT COUNT(1) FROM Employee、 SELECT COUNT(*)  FROM Employee

等替换SELECT COUNT(0) FROM Employee 脚本,如下所示

DBCC DROPCLEANBUFFERS;
 
DBCC FREEPROCCACHE;
 
SET STATISTICS TIME ON;
 
SELECT COUNT(1) FROM Employee
 
SET STATISTICS TIME OFF; 
 

依葫芦画瓢每段脚本执行10次,最后我们求得到的结果的平均值,为了形象显示,我用Excel把数据显示如下: 

 SELECT COUNT(1) FROM Employee

 

SELECT COUNT(0) FROM Employee

 

SELECT COUNT(*) FROM Employee

 

SELECT COUNT(EmployeeName) FROM Employee

 

从实验结果来看,执行快慢的顺序为: COUNT(EmployeeName) > COUNT(0) ~= COUNT(1) > COUNT(*);从实验结果来看,我们至少验证了 COUNT(0) ~= COUNT(1) > COUNT(*)的结论,网上有篇帖子《SQL Server 索引结构及其使用》篇所下的结论count(*)不比count(字段)慢 显然是不严谨的,他只做了一次实验,而我们这里是10次结果的平均值。那么现在问题来了,为什么COUNT(EmployeeName)要快于COUNT(0) >= COUNT(1),它如果不是主键、字段没有索引呢?网上不是有些资料显示COUNT(1)效率最高,速度最快吗? 我们10次得到平结值有没有误差呢?抽样能否反映事实呢?下面我用这个方法来大量获得语句执行时间,然后求平均值,(我觉得这方法应该是可以反映实际CPU时间的)如果有不妥的地方,也希望大家指正。 创建下面一个表

CREATE TABLE ExcuteTime
(
    [Type]     VARCHAR(10),    --不同COUNT类型
     [CpuTime]    FLOAT         --语句执行的毫秒
)
--得到COUNT(1)100次的执行时间
DECLARE @BeginTime DATETIME;
DECLARE @Num INT;
SET @Num = 1;
WHILE @Num <= 100
BEGIN
SET @BeginTime = GETDATE();
SELECT COUNT(1) FROM Employee;
INSERT INTO ExcuteTime
VALUES('Count(1)', DATEDIFF(ms, @BeginTime,GETDATE()));
SET @Num = @Num + 1;
END
GO

 

然后也依次得到其它几种SQl 的执行时间,另外我们也把COUNT(Department)得数据加入进来,下面是我得到的实验结果的平均值

COUNT(1) COUNT(0) COUNT(*) COUNT(EmployeeName) COUNT(Department)
100.09 99.27 100.28 65.95 134.13
      

 

    

 

数据显示也与上面的测试结果相一致,虽然得到了这些结果,由于统计偏差缘故,COUNT(0)比 COUNT(1) 稍稍快些,这个是完全可以忽略,因为我统计的次数比小,很容易造成偏差,COUNT(*) 接近于COUNT(1),估计是由于数据缓存缘故,其实我们从实验结果可以看出统计数据的速度: 对索引字段统计要快于COUNT(1),原因是COUNT(1)是要走全表扫描,而COUNT(1) 快于COUNT(*) ,是因为COUNT(*)走全表扫描的开销要大于COUNT(1), 至于统计非索引字段COUNT(Department),比较偏大的,则让我有点纳闷,估计是统计偏差缘故。










相关文章
|
2月前
|
SQL 数据库 UED
SQL性能提升秘籍:5步优化法与10个实战案例
在数据库管理和应用开发中,SQL查询的性能优化至关重要。高效的SQL查询不仅可以提高应用的响应速度,还能降低服务器负载,提升用户体验。本文将分享SQL优化的五大步骤和十个实战案例,帮助构建高效、稳定的数据库应用。
81 3
|
2月前
|
SQL IDE 数据库连接
IntelliJ IDEA处理大文件SQL:性能优势解析
在数据库开发和管理工作中,执行大型SQL文件是一个常见的任务。传统的数据库管理工具如Navicat在处理大型SQL文件时可能会遇到性能瓶颈。而IntelliJ IDEA,作为一个强大的集成开发环境,提供了一些高级功能,使其在执行大文件SQL时表现出色。本文将探讨IntelliJ IDEA在处理大文件SQL时的性能优势,并与Navicat进行比较。
36 4
|
2月前
|
SQL 存储 缓存
如何优化SQL查询性能?
【10月更文挑战第28天】如何优化SQL查询性能?
177 10
|
2月前
|
SQL 关系型数据库 MySQL
惊呆:where 1=1 可能严重影响性能,差了10多倍,快去排查你的 sql
老架构师尼恩在读者交流群中分享了关于MySQL中“where 1=1”条件的性能影响及其解决方案。该条件在动态SQL中常用,但可能在无真实条件时导致全表扫描,严重影响性能。尼恩建议通过其他条件或SQL子句命中索引,或使用MyBatis的`&lt;where&gt;`标签来避免性能问题。他还提供了详细的执行计划分析和优化建议,帮助大家在面试中展示深厚的技术功底,赢得面试官的青睐。更多内容可参考《尼恩Java面试宝典PDF》。
|
2月前
|
SQL 缓存 监控
SQL性能提升指南:五大优化策略与十个实战案例
在数据库性能优化的世界里,SQL优化是提升查询效率的关键。一个高效的SQL查询可以显著减少数据库的负载,提高应用响应速度,甚至影响整个系统的稳定性和扩展性。本文将介绍SQL优化的五大步骤,并结合十个实战案例,为你提供一份详尽的性能提升指南。
59 0
|
3月前
|
SQL 监控 数据库
慢SQL对数据库写入性能的影响及优化技巧
在数据库管理系统中,慢SQL(即执行缓慢的SQL语句)不仅会影响查询性能,还可能对数据库的写入性能产生显著的不利影响
|
3月前
|
SQL 数据库 索引
SQL中COUNT函数结合条件使用的技巧与方法
在SQL查询中,COUNT函数是一个非常常用的聚合函数,用于计算表中满足特定条件的记录数
|
3月前
|
SQL 关系型数据库 PostgreSQL
遇到SQL 子查询性能很差?其实可以这样优化
遇到SQL 子查询性能很差?其实可以这样优化
158 2
|
3月前
|
SQL Oracle 关系型数据库
Oracle SQL:了解执行计划和性能调优
Oracle SQL:了解执行计划和性能调优
84 1
|
3月前
|
SQL 存储 数据库
慢SQL对数据库写入性能的影响及优化技巧
在数据库管理系统中,慢SQL(即执行缓慢的SQL语句)不仅会影响查询性能,还可能对数据库的写入性能产生显著的不利影响