在计算机世界,百万分之一的事情会在几秒钟发生,并且问题的结果是严重的!
1、并发的管理
SMP(Symmetrical Multi-Processing)对称多处理机。
竞争情况来自对共享资源的存取。
存取管理的常用技术是加锁或者互斥。
2、旗标的互斥体
当一个进程到了无法做进一步处理的时候,它就去睡眠(阻塞),让出处理器给别人知道以后某个时间它能够再做其他事情。
旗标是一个单个整型值,结合一对函数,成为P和V,一个想要进入临界区的进程将在旗标上调用P,如果旗标的值大于0,这个值递减1并且进程继续,相反,如果旗标的值是0,进程必须等待直到别的进程释放旗标,解锁一个旗标通过调用V完成,这个函数递增旗标的值,如果需要,唤醒等待的进程。
旗标的使用需要包含<asm/semaphore.h>,相关类型是struct semaphore,直接创建一个旗标,使用sema_init来设定它:
Void sema_init(struct semaphore *sem,int val);
这里val是安排给旗标的初始值。
互斥锁模式的旗标:
DECLARE_MUTEX(name);
DECLARE_MUTEX_LOCKED(name);
这里name是一个旗标变量,前面是初始化为1,后面是初始化为0。
互斥锁在运行时初始化使用下面中的一个:
Void init_MUTEX(struct semaphore *sem);
Void init_MUTEX_LOCKED(struct semaphore *sem);
3、completions(实现)机制
completion 是任务使用的一个轻量级机
制: 允许一个线程告诉另一个线程工作已经完成。
completion 机制的典型使用是在模块退出时与内核线程的终止一起,当模块准备好被清理时, exit 函数告
知线程退出并且等待结束. 为此目的, 内核包含一个特殊的函数给线程使用:
void complete_and_exit(struct completion *c, long retval);
4、自旋锁
一个自旋锁是一个互斥设备, 只能有 2 个值:"上锁"和"解锁". 它常常实现为一个整数值中的一个单个位. 想获取一个特殊锁的代码则测试相关的位. 如果锁是可用的, 这个"上锁"位被置位并且代码继续进入临界区. 相反, 如果这个锁已经被别人获得, 代码进入一个紧凑的循环中反复检查这个锁, 直到它变为可用. 这个循环就是自旋锁的"自旋"部分。
5、快速参考
本章已介绍了很多符号给并发的管理. 最重要的这些在此总结:
#include <asm/semaphore.h>
定义旗标和其上操作的包含文件.
DECLARE_MUTEX(name);
DECLARE_MUTEX_LOCKED(name);
2 个宏定义, 用来声明和初始化一个在互斥模式下使用的旗标.
void init_MUTEX(struct semaphore *sem);
void init_MUTEX_LOCKED(struct semaphore *sem);
这 2 函数用来在运行时初始化一个旗标.
void down(struct semaphore *sem);
int down_interruptible(struct semaphore *sem);
int down_trylock(struct semaphore *sem);
void up(struct semaphore *sem);
加锁和解锁旗标. down 使调用进程进入不可打断睡眠, 如果需要; down_interruptible, 相反, 可以被信号打断. down_trylock 不睡眠; 相反, 它立刻返回如果旗标不可用. 加锁旗标的代码必须最终使用 up 解锁它.
struct rw_semaphore;
init_rwsem(struct rw_semaphore *sem);
旗标的读者/写者版本和初始化它的函数.
void down_read(struct rw_semaphore *sem);
int down_read_trylock(struct rw_semaphore *sem);
void up_read(struct rw_semaphore *sem);
获得和释放对读者/写者旗标的读存取的函数.
void down_write(struct rw_semaphore *sem);
int down_write_trylock(struct rw_semaphore *sem);
void up_write(struct rw_semaphore *sem);
void downgrade_write(struct rw_semaphore *sem);
管理对读者/写者旗标写存取的函数.
#include <linux/completion.h>
DECLARE_COMPLETION(name);
init_completion(struct completion *c);
INIT_COMPLETION(struct completion c);
描述 Linux completion 机制的包含文件, 已经初始化 completion 的正常方法.
INIT_COMPLETION 应当只用来重新初始化一个之前已经使用过的 completion.
void wait_for_completion(struct completion *c);
等待一个 completion 事件发出.
void complete(struct completion *c);
void complete_all(struct completion *c);
发出一个 completion 事件. completion 唤醒, 最多, 一个等待着的线程, 而 complete_all 唤醒全
部等待者.
void complete_and_exit(struct completion *c, long retval);
通过调用 complete 来发出一个 completion 事件, 并且为当前线程调用 exit.
#include <linux/spinlock.h>
spinlock_t lock = SPIN_LOCK_UNLOCKED;
spin_lock_init(spinlock_t *lock);
定义自旋锁接口的包含文件, 以及初始化锁的 2 个方法.
void spin_lock(spinlock_t *lock);
void spin_lock_irqsave(spinlock_t *lock, unsigned long flags);
void spin_lock_irq(spinlock_t *lock);
void spin_lock_bh(spinlock_t *lock);
加锁一个自旋锁的各种方法, 并且, 可能地, 禁止中断.
int spin_trylock(spinlock_t *lock);
int spin_trylock_bh(spinlock_t *lock);
上面函数的非自旋版本; 在获取锁失败时返回 0, 否则非零.
void spin_unlock(spinlock_t *lock);
void spin_unlock_irqrestore(spinlock_t *lock, unsigned long flags);
void spin_unlock_irq(spinlock_t *lock);
void spin_unlock_bh(spinlock_t *lock);
释放一个自旋锁的相应方法.
rwlock_t lock = RW_LOCK_UNLOCKED
rwlock_init(rwlock_t *lock);
初始化读者/写者锁的 2 个方法.
void read_lock(rwlock_t *lock);
void read_lock_irqsave(rwlock_t *lock, unsigned long flags);
void read_lock_irq(rwlock_t *lock);
void read_lock_bh(rwlock_t *lock);
获得一个读者/写者锁的读存取的函数.
void read_unlock(rwlock_t *lock);
void read_unlock_irqrestore(rwlock_t *lock, unsigned long flags);
void read_unlock_irq(rwlock_t *lock);
void read_unlock_bh(rwlock_t *lock);
释放一个读者/写者自旋锁的读存取.
void write_lock(rwlock_t *lock);
void write_lock_irqsave(rwlock_t *lock, unsigned long flags);
void write_lock_irq(rwlock_t *lock);
void write_lock_bh(rwlock_t *lock);
获得一个读者/写者锁的写存取的函数.
void write_unlock(rwlock_t *lock);
void write_unlock_irqrestore(rwlock_t *lock, unsigned long flags);
void write_unlock_irq(rwlock_t *lock);
void write_unlock_bh(rwlock_t *lock);
释放一个读者/写者自旋锁的写存取的函数.
#include <asm/atomic.h>
atomic_t v = ATOMIC_INIT(value);
void atomic_set(atomic_t *v, int i);
int atomic_read(atomic_t *v);
void atomic_add(int i, atomic_t *v);
void atomic_sub(int i, atomic_t *v);
void atomic_inc(atomic_t *v);
void atomic_dec(atomic_t *v);
int atomic_inc_and_test(atomic_t *v);
int atomic_dec_and_test(atomic_t *v);
int atomic_sub_and_test(int i, atomic_t *v);
int atomic_add_negative(int i, atomic_t *v);
int atomic_add_return(int i, atomic_t *v);
int atomic_sub_return(int i, atomic_t *v);
int atomic_inc_return(atomic_t *v);
int atomic_dec_return(atomic_t *v);
原子地存取整数变量. atomic_t 变量必须只通过这些函数存取.
#include <asm/bitops.h>
void set_bit(nr, void *addr);
void clear_bit(nr, void *addr);
void change_bit(nr, void *addr);
test_bit(nr, void *addr);
int test_and_set_bit(nr, void *addr);
int test_and_clear_bit(nr, void *addr);
int test_and_change_bit(nr, void *addr);
原子地存取位值; 它们可用做标志或者锁变量. 使用这些函数阻止任何与并发存取这个位相关的竞争情况.
#include <linux/seqlock.h>
seqlock_t lock = SEQLOCK_UNLOCKED;
seqlock_init(seqlock_t *lock);
定义 seqlock 的包含文件, 已经初始化它们的 2 个方法.
unsigned int read_seqbegin(seqlock_t *lock);
unsigned int read_seqbegin_irqsave(seqlock_t *lock, unsigned long flags);
int read_seqretry(seqlock_t *lock, unsigned int seq);
int read_seqretry_irqrestore(seqlock_t *lock, unsigned int seq, unsigned long flags);
获得一个 seqlock-保护 的资源的读权限的函数.
void write_seqlock(seqlock_t *lock);
void write_seqlock_irqsave(seqlock_t *lock, unsigned long flags);
void write_seqlock_irq(seqlock_t *lock);
void write_seqlock_bh(seqlock_t *lock);
获取一个 seqlock-保护的资源的写权限的函数.
void write_sequnlock(seqlock_t *lock);
void write_sequnlock_irqrestore(seqlock_t *lock, unsigned long flags);
void write_sequnlock_irq(seqlock_t *lock);
void write_sequnlock_bh(seqlock_t *lock);
释放一个 seqlock-保护的资源的写权限的函数.
#include <linux/rcupdate.h>
需要使用读取-拷贝-更新(RCU)机制的包含文件.
void rcu_read_lock;
void rcu_read_unlock;
获取对由 RCU 保护的资源的原子读权限的宏定义.
void call_rcu(struct rcu_head *head, void (*func)(void *arg), void *arg);
安排一个回调在所有处理器已经被调度以及一个 RCU-保护的资源可用被安全的释放之后运行.