poj 2528 Mayor's posters

简介: 点击打开链接poj2528 思路:离散化+线段树成段更新 分析: 1 首先这一题的数据是错误的,这题的区间的最大值为10000000,如果我们按照正常的线段树的思路去做的话肯定是会超内存和超时的。


点击打开链接poj2528

思路:离散化+线段树成段更新
分析:
1 首先这一题的数据是错误的,这题的区间的最大值为10000000,如果我们按照正常的线段树的思路去做的话肯定是会超内存和超时的。
2 所以我们应该考虑离散化,我们把区间离散成集中的区间。但是这个地方会有个问题
给出下面两个简单的例子应该能体现普通离散化的缺陷:
例子一:1-10 1-4 5-10
例子二:1-10 1-4 6-10
普通离散化后都变成了[1,4][1,2][3,4]
线段2覆盖了[1,2],线段3覆盖了[3,4],那么线段1是否被完全覆盖掉了呢?
例子一是完全被覆盖掉了,而例子二没有被覆盖
为了解决这种缺陷,我们可以在排序后的数组上加些处理,比如说[1,2,6,10]
如果相邻数字间距大于1的话,在其中加上任意一个数字,比如加成[1,2,3,6,7,10],然后再做线段树就好了.

代码:

#include<set>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;

const int MAXN = 10010;
struct Node{
    int left;
    int right;
    int mark;
};
Node node[4*MAXN] , tmp[MAXN];
int n , pos;
int num[2*MAXN];
set<int>s;

void hash_map(){
    int index = 1 , tmpNum[MAXN*2];
    for(int i = 0 ; i < pos ; i++){
       tmpNum[index++] = num[i];
       if(num[i+1]-num[i] > 1)
          tmpNum[index++] = num[i]+1;
    }
    pos = index;
    memcpy(num , tmpNum , sizeof(num));
}

int search(int x){
    int left , right , mid;
    left = 1 , right = pos-1;
    while(left <= right){
       int mid = (left+right)>>1;
       if(num[mid] == x) 
           return mid;
       else if(num[mid] < x)
           left = mid+1;
       else
           right = mid-1;
    }
}

void buildTree(int left , int right , int pos){
    node[pos].left = left;
    node[pos].right = right;
    node[pos].mark = 0;
    if(left == right)
      return;
    int mid = (left+right)>>1;
    buildTree(left , mid , pos<<1);
    buildTree(mid+1 , right , (pos<<1)+1);
}

void push_down(int pos){
    if(node[pos].mark){
       node[pos<<1].mark = node[pos].mark;
       node[(pos<<1)+1].mark = node[pos].mark;
       node[pos].mark = 0;
    }
}

void update(int left , int right , int value , int pos){
    if(left <= node[pos].left && right >= node[pos].right){
       node[pos].mark = value;
       return;
    }
    push_down(pos);
    int mid = (node[pos].left + node[pos].right)>>1;
    if(right <= mid)
       update(left , right , value , pos<<1);
    else if(left > mid)
       update(left , right , value , (pos<<1)+1);
    else{
       update(left , mid , value , pos<<1);
       update(mid+1 , right , value , (pos<<1)+1);
    }
}

int query(int index , int pos){
    if(node[pos].left == node[pos].right)
      return node[pos].mark;
    push_down(pos);
    int mid = (node[pos].left + node[pos].right)>>1;
    if(index <= mid)
       return query(index , pos<<1);
    else
       return query(index , (pos<<1)+1);
}

int main(){
    int Case , cnt;
    int x , y;
    scanf("%d" , &Case);
    while(Case--){
       scanf("%d" , &n);
       pos = 0 , cnt = 0;
       for(int i = 0 ; i < n ; i++){
          scanf("%d%d" , &tmp[i].left , &tmp[i].right);
          num[pos++] = tmp[i].left , num[pos++] = tmp[i].right;
       }
       //离散化
       sort(num , num+pos);
       pos = unique(num , num+pos)-num;
       hash_map();   
       for(int i = 0 ; i < n ; i++){
          int index = search(tmp[i].left);
          tmp[i].left = index;
          index = search(tmp[i].right);
          tmp[i].right = index;
       }
       buildTree(1 , pos-1 , 1);
       for(int i = 0 ; i < n ; i++)
           update(tmp[i].left , tmp[i].right , ++cnt , 1);
       s.clear();
       for(int i = 1 ; i < pos ; i++)
           s.insert(query(i , 1));
       printf("%d\n" , s.size());
    }
    return 0;
}





目录
相关文章
|
7月前
POJ-2245-Lotto
POJ-2245-Lotto
29 0
|
7月前
Hopscotch(POJ-3050)
Hopscotch(POJ-3050)
|
测试技术
POJ 1001
此题用最朴素的思路实现即可,需模拟加法器,乘法器,最烦人的地方是特殊情形,如末位是小数点(12.^2=144,取小数点),整数末位是0(100^2=10000),0次幂,测试用例可能超出题目中说的范围,可能包含0次幂(100.0^0=0, 0.10^1=0.1)。
754 0
|
人工智能
POJ 2531
初学dfs参考别人代码,如有雷同,见怪不怪。#include using namespace std; int aa[25][25]; int maxa=0; int step[25]={0},n; void dfs(int a,int b) { int t=b; step...
712 0
poj 1455
Description n participants of > sit around the table. Each minute one pair of neighbors can change their places.
620 0
|
存储
poj 1990 MooFest
点击打开poj 1990 思路: 树状数组 分析: 1 题目给定n头牛的听力v[i]. 现在规定两头你i和j如果要进行交流的话那么消耗的能量就是dis(i,j)*max(v[i].
750 0