AAC_LC用LATM封装header信息解析 Audio Specific Config格式分析

本文涉及的产品
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云解析 DNS,旗舰版 1个月
简介: 通常来说AAC的头信息在编解码过程中是可以获取到的,但今天需要根据音频参数生成相应的AAC头。项目中使用的是AAC_LC,今天先对它的结构进行分析。     项目中使用ffmpeg进行音频编码,音频编码库为FAAC,好吧,直接看代码吧。

通常来说AAC的头信息在编解码过程中是可以获取到的,但今天需要根据音频参数生成相应的AAC头。项目中使用的是AAC_LC,今天先对它的结构进行分析。

   项目中使用ffmpeg进行音频编码,音频编码库为FAAC,好吧,直接看代码吧。

   ffmpeg调用Faac_encode_init()初始化编码器;在Faac_encode_init()调用faacEncGetDecoderSpecificInfo()获取AAC_LC头信息内容及长度。

 

 

?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

int FAACAPI faacEncGetDecoderSpecificInfo(faacEncHandle hEncoder,unsigned char** ppBuffer,unsigned long* pSizeOfDecoderSpecificInfo)

{

   BitStream* pBitStream = NULL; "font-family:Times New Roman;"> if((hEncoder == NULL) || (ppBuffer == NULL) || (pSizeOfDecoderSpecificInfo == NULL)) {

       return -1;

   }

 

   if(hEncoder->config.mpegVersion == MPEG2){

       return -2; /* not supported */

   }

 

   *pSizeOfDecoderSpecificInfo = 2;

   *ppBuffer = malloc(2);

 

   if(*ppBuffer != NULL){

 

       memset(*ppBuffer,0,*pSizeOfDecoderSpecificInfo);

       pBitStream = OpenBitStream(*pSizeOfDecoderSpecificInfo, *ppBuffer);

       PutBit(pBitStream, hEncoder->config.aacObjectType, 5);

       PutBit(pBitStream, hEncoder->sampleRateIdx, 4);

       PutBit(pBitStream, hEncoder->numChannels, 4);

       CloseBitStream(pBitStream);

 

       return 0;

   } else {

       return -3;

   }

}

 

 


 

   从代码中可以看出,头数据长度固定为2;

   数据内容由高位到低位依次为:aacObjectType(5bits),sampleRateIdx(4bits),numChannels(4bits)

例如:音频编码参数为:

aacObjectType:AAC_LC,对应值为2,用5bit二进制表示为00010;

sampleRate:44100KHz, 对应的IDX值为4, 用4bit二进制表示为0100;

numChannels:2,对应的值为2,用4bit二进制表示为0010;

将它们由高位到低位串起来:0001,0010,0001,0000,

则,对应的十六进制值为:0x1220

 

引一些参考资料:http://wiki.multimedia.cx/index.php?title=MPEG-4_Audio

 

Audio Specific Config

The Audio Specific Config is the global header for MPEG-4 Audio:

5 bits: object type
if (object type == 31)
    6 bits + 32: object type
4 bits: frequency index
if (frequency index == 15)
    24 bits: frequency
4 bits: channel configuration
var bits: AOT Specific Config

Audio Object Types

MPEG-4 Audio Object Types:

  • 0: Null
  • 1: AAC Main
  • 2: AAC LC (Low Complexity)
  • 3: AAC SSR (Scalable Sample Rate)
  • 4: AAC LTP (Long Term Prediction)
  • 5: SBR (Spectral Band Replication)
  • 6: AAC Scalable
  • 7: TwinVQ
  • 8: CELP (Code Excited Linear Prediction)
  • 9: HXVC (Harmonic Vector eXcitation Coding)
  • 10: Reserved
  • 11: Reserved
  • 12: TTSI (Text-To-Speech Interface)
  • 13: Main Synthesis
  • 14: Wavetable Synthesis
  • 15: General MIDI
  • 16: Algorithmic Synthesis and Audio Effects
  • 17: ER (Error Resilient) AAC LC
  • 18: Reserved
  • 19: ER AAC LTP
  • 20: ER AAC Scalable
  • 21: ER TwinVQ
  • 22: ER BSAC (Bit-Sliced Arithmetic Coding)
  • 23: ER AAC LD (Low Delay)
  • 24: ER CELP
  • 25: ER HVXC
  • 26: ER HILN (Harmonic and Individual Lines plus Noise)
  • 27: ER Parametric
  • 28: SSC (SinuSoidal Coding)
  • 29: PS (Parametric Stereo)
  • 30: MPEG Surround
  • 31: (Escape value)
  • 32: Layer-1
  • 33: Layer-2
  • 34: Layer-3
  • 35: DST (Direct Stream Transfer)
  • 36: ALS (Audio Lossless)
  • 37: SLS (Scalable LosslesS)
  • 38: SLS non-core
  • 39: ER AAC ELD (Enhanced Low Delay)
  • 40: SMR (Symbolic Music Representation) Simple
  • 41: SMR Main
  • 42: USAC (Unified Speech and Audio Coding) (no SBR)
  • 43: SAOC (Spatial Audio Object Coding)
  • 44: LD MPEG Surround
  • 45: USAC

Sampling Frequencies

There are 13 supported frequencies:

  • 0: 96000 Hz
  • 1: 88200 Hz
  • 2: 64000 Hz
  • 3: 48000 Hz
  • 4: 44100 Hz
  • 5: 32000 Hz
  • 6: 24000 Hz
  • 7: 22050 Hz
  • 8: 16000 Hz
  • 9: 12000 Hz
  • 10: 11025 Hz
  • 11: 8000 Hz
  • 12: 7350 Hz
  • 13: Reserved
  • 14: Reserved
  • 15: frequency is written explictly

Channel Configurations

These are the channel configurations:

  • 0: Defined in AOT Specifc Config
  • 1: 1 channel: front-center
  • 2: 2 channels: front-left, front-right
  • 3: 3 channels: front-center, front-left, front-right
  • 4: 4 channels: front-center, front-left, front-right, back-center
  • 5: 5 channels: front-center, front-left, front-right, back-left, back-right
  • 6: 6 channels: front-center, front-left, front-right, back-left, back-right, LFE-channel
  • 7: 8 channels: front-center, front-left, front-right, side-left, side-right, back-left, back-right, LFE-channel
  • 8-15: Reserved


 


目录
相关文章
|
2月前
|
机器学习/深度学习 数据采集 存储
时间序列预测新突破:深入解析循环神经网络(RNN)在金融数据分析中的应用
【10月更文挑战第7天】时间序列预测是数据科学领域的一个重要课题,特别是在金融行业中。准确的时间序列预测能够帮助投资者做出更明智的决策,比如股票价格预测、汇率变动预测等。近年来,随着深度学习技术的发展,尤其是循环神经网络(Recurrent Neural Networks, RNNs)及其变体如长短期记忆网络(LSTM)和门控循环单元(GRU),在处理时间序列数据方面展现出了巨大的潜力。本文将探讨RNN的基本概念,并通过具体的代码示例展示如何使用这些模型来进行金融数据分析。
342 2
|
26天前
|
数据采集 自然语言处理 搜索推荐
基于qwen2.5的长文本解析、数据预测与趋势分析、代码生成能力赋能esg报告分析
Qwen2.5是一款强大的生成式预训练语言模型,擅长自然语言理解和生成,支持长文本解析、数据预测、代码生成等复杂任务。Qwen-Long作为其变体,专为长上下文场景优化,适用于大型文档处理、知识图谱构建等。Qwen2.5在ESG报告解析、多Agent协作、数学模型生成等方面表现出色,提供灵活且高效的解决方案。
123 49
|
17天前
|
测试技术 开发者 Python
使用Python解析和分析源代码
本文介绍了如何使用Python的`ast`模块解析和分析Python源代码,包括安装准备、解析源代码、分析抽象语法树(AST)等步骤,展示了通过自定义`NodeVisitor`类遍历AST并提取信息的方法,为代码质量提升和自动化工具开发提供基础。
31 8
|
15天前
|
调度 开发者
核心概念解析:进程与线程的对比分析
在操作系统和计算机编程领域,进程和线程是两个基本而核心的概念。它们是程序执行和资源管理的基础,但它们之间存在显著的差异。本文将深入探讨进程与线程的区别,并分析它们在现代软件开发中的应用和重要性。
33 4
|
2月前
|
自然语言处理 数据可视化 前端开发
从数据提取到管理:合合信息的智能文档处理全方位解析【合合信息智能文档处理百宝箱】
合合信息的智能文档处理“百宝箱”涵盖文档解析、向量化模型、测评工具等,解决了复杂文档解析、大模型问答幻觉、文档解析效果评估、知识库搭建、多语言文档翻译等问题。通过可视化解析工具 TextIn ParseX、向量化模型 acge-embedding 和文档解析测评工具 markdown_tester,百宝箱提升了文档处理的效率和精确度,适用于多种文档格式和语言环境,助力企业实现高效的信息管理和业务支持。
4060 5
从数据提取到管理:合合信息的智能文档处理全方位解析【合合信息智能文档处理百宝箱】
|
2月前
|
机器学习/深度学习 自然语言处理 JavaScript
信息论、机器学习的核心概念:熵、KL散度、JS散度和Renyi散度的深度解析及应用
在信息论、机器学习和统计学领域中,KL散度(Kullback-Leibler散度)是量化概率分布差异的关键概念。本文深入探讨了KL散度及其相关概念,包括Jensen-Shannon散度和Renyi散度。KL散度用于衡量两个概率分布之间的差异,而Jensen-Shannon散度则提供了一种对称的度量方式。Renyi散度通过可调参数α,提供了更灵活的散度度量。这些概念不仅在理论研究中至关重要,在实际应用中也广泛用于数据压缩、变分自编码器、强化学习等领域。通过分析电子商务中的数据漂移实例,展示了这些散度指标在捕捉数据分布变化方面的独特优势,为企业提供了数据驱动的决策支持。
119 2
信息论、机器学习的核心概念:熵、KL散度、JS散度和Renyi散度的深度解析及应用
|
26天前
|
数据采集 存储 自然语言处理
基于Qwen2.5的大规模ESG数据解析与趋势分析多Agent系统设计
2022年中国上市企业ESG报告数据集,涵盖制造、能源、金融、科技等行业,通过Qwen2.5大模型实现报告自动收集、解析、清洗及可视化生成,支持单/多Agent场景,大幅提升ESG数据分析效率与自动化水平。
|
2月前
|
人工智能 前端开发 JavaScript
拿下奇怪的前端报错(一):报错信息是一个看不懂的数字数组Buffer(475) [Uint8Array],让AI大模型帮忙解析
本文介绍了前端开发中遇到的奇怪报错问题,特别是当错误信息不明确时的处理方法。作者分享了自己通过还原代码、试错等方式解决问题的经验,并以一个Vue3+TypeScript项目的构建失败为例,详细解析了如何从错误信息中定位问题,最终通过解读错误信息中的ASCII码找到了具体的错误文件。文章强调了基础知识的重要性,并鼓励读者遇到类似问题时不要慌张,耐心分析。
|
2月前
|
存储 SQL 分布式计算
湖仓一体架构深度解析:构建企业级数据管理与分析的新基石
【10月更文挑战第7天】湖仓一体架构深度解析:构建企业级数据管理与分析的新基石
135 1
|
2月前
|
存储 编译器 C++
【初阶数据结构】掌握二叉树遍历技巧与信息求解:深入解析四种遍历方法及树的结构与统计分析
【初阶数据结构】掌握二叉树遍历技巧与信息求解:深入解析四种遍历方法及树的结构与统计分析

热门文章

最新文章

  • 1
    Spring Boot与Spring Cloud Config的集成
    230
  • 2
    若依修改标题和icon,在vue.config.js和.env.development进行修改
    403
  • 3
    若依修改,若依的com.ruoyi.framework.config在那?搜索文件使用ctrl+shift+f不用搜狗输入法,其他輸入法,用英文
    48
  • 4
    若依修改,若依部署在本地运行时的注意事项,后端连接了服务器,本地的vue.config.js要先改成localhost:端口号与后端匹配,部署的时候再改公网IP:端口号
    193
  • 5
    部署常用的流程,可以用后端,连接宝塔,将IP地址修改好,本地只要连接好了,在本地上前后端跑起来,前端能够跑起来,改好了config.js资料,后端修改好数据库和连接redis,本地上跑成功了,再改
    73
  • 6
    若依修改---重新部署项目注意事项,新文件初始化需要修改的地方,打包后的文件很难进行修改,如果想要不断修改项目,注意保存原项目,才可以不断修改,前端:在Vue.config.js文件中修改target
    177
  • 7
    若依修改之后,无法访问前端项目如何解决,只能访问后端的接口,我的接口8083,端不显示咋解决?在vue.config.js文件中的映射路径要跟后端匹配,到软件商店里找到Ngnix配置代理,设80不用加
    708
  • 8
    文本vitepress,如何设置背景图,如何插入背景图,如何插入logo,为了放背景图片,我们要新建pubilc的文件夹,插入logo要在config.js中进行配置,注意细节,在添加背景时,注意格式
    155
  • 9
    文本,vitepress的使用,如何使用vitevitepress没有config.js该怎么办?这里使用vitepress进行手动配置,参考只爭朝夕不負韶華的文章
    76
  • 10
    vue 配置【详解】 vue.config.js ( 含 webpack 配置 )
    81
  • 推荐镜像

    更多