【小白话通信】连续分布的产生-阿里云开发者社区

开发者社区> tengweitw> 正文

【小白话通信】连续分布的产生

简介: 由于篇幅有限,前一篇文章《离散分布的产生》中只讲述了用均匀分布产生离散分布的方法,那么本文接着讲如何利用均匀分布产生连续分布的方法。
+关注继续查看

由于篇幅有限,前一篇文章《离散分布的产生》中只讲述了用均匀分布产生离散分布的方法,那么本文接着讲如何利用均匀分布产生连续分布的方法。


连续分布

连续分布主要有以下几种:均匀分布 伽马分布 正态分布 贝塔分布 柯西分布 对数正态分布 双指数分布

产生各种连续分布的方法有很多,我把它分为两类:通用方法、特殊方法。特殊方法就是根据各个连续分布的特性而特有的方法。


通用方法

通用方法指的是对于各种连续分布理论上都适用的方法。下面只讲解分布函数法、舍取法这两种通用的方法。

分布函数法

概率积分变换定理
设随机变量X有连续累计分布函数F(x),令U=F(X),则U服从(0,1)上的均匀分布。

由概率积分变换定理可知,如果知道一个连续分布函数的累计分布函数F(x),则可以求得随机变量:X=F1(U),其中U服从01内的均匀分布。下面以指数分布来举例说明:
指数分布的累计分布函数F(x)可以表示为:

F(x)={1eλx,x00,x<0

由于U=F(X)服从(0,1)上的均匀分布,则随机变量:X=F1(U)=Ln(1U)λ。因此只需要产生服从(0,1)上的均匀分布的U,就可以计算得到服从指数分布的随机变量X。
  • 指数分布 
%指数分布
%参数:到达率lambda
%mean=1/lamda,  var=1/lambda^2
clear all
close all
clc
lambda=1;%指数分布的产生lambda
n=10;%x的取值为0到无穷大,这里只取前n个

%------------------------由内置函数直接给出-------------------------%

%指数分布的产生,即事件发生的时间间隔x,x取值为0到正无穷
X=exprnd(1/lambda);%产生1均值为1/lamda的指数分布

%指数分布的cdf
x=0:.1:n;
Fx=expcdf(x,1/lambda);
%figure
%plot(x,Fx,'-')
%title('指数分布的cdf')

%指数分布的pdf
x=0:.1:n;
Px=exppdf(x,1/lambda);
figure
plot(x,Px,'r-')
hold on
title('指数分布的pdf')



%-------------------------由均匀分布推导出(分布函数法)-------------------------%
N=1000;%样本点数
U=rand(1,N);%U服从均匀分布

X2=-(log(1-U))/lambda;%X2服从指数分布,X2由分布函数法得到,对于不同的分布,分布函数不同,这里的表达式需作相应的改变!

%下面的程序是绘制X2的概率密度函数pdf
Max=ceil(max(X2));
step=1;%步长
range=0:step:Max;

for i=1:length(range)-1
    YY(i)=sum(range(i)<=X2&X2<=range(i+1))/N/step;%统计落在区间中的点数
    XX(i)=(range(i)+range(i+1))/2;
end

plot(XX,YY,'bo')
hold on
title('指数分布的pdf')
legend('内置函数产生','分布函数法产生')

结果显示如下:(指数参数λ=1的情况)
这里写图片描述

分布函数法的局限性:由于该方法的关键就是求出分布函数的反函数,从而得到随机变量X关于均匀分布随机变量U的表达式。然而有些分布是不容易求得其反函数的,例如我们常见的正态分布,其分布函数需要用其概率密度函数表示如下:

F(x)=1σ2πxe(tu)22σ2dt

其中,uσ分布为均值和标准差。显然,当得知F(x)的取值时,也很难求得此时的x的值。因此,当出现上述问题时,我们可以采用舍去法。

舍去法

定理设随机变量Y,V的概率密度函数分布为fY(y)fV(v),其中,fY(y)fV(v)有相同的支撑集且

M=max{fY(y)/fV(v)}<+

按下列步骤可以生成随机变量Y服从概率密度为fY(y)的分布:
1. 生成独立的随机变量U,V,其中,U服从01的均匀分布,V服从概率密度函数为fV(v)的分布
2. 如果U<1MfY(V)/fV(V),则令Y=V,否则返回到步骤1。

下面以用舍去法生成正态分布来具体说明:假设我们要用舍取法生成标准正态分布,标准正态分布的概率密度函数如下所示:
这里写图片描述

  • 确定V的分布
    由舍取法的步骤2可知,生成的正态分布变量Y的取值包含于随机变量V的取值中。因此,我们需要根据正态分布随机变量的取值范围,来选择V应该服从的分布!我们一般取V服从均匀分布(当然也可以取其他的分布,注意需要满足取值范围)。
    理论上,正态随机变量的取值在整个实数域中,因此V应该服从区间为实数域的均匀分布,显然这个均匀分布我们很难表示出来。但由上图可知,标准正态分布的取值基本在55之间,因此我们只需要使得V服从区间在55的均匀分布即可以很好的近似。

  • 确定M的大小
    在公式M=max{fY(y)/fV(v)}中,fV(v)=110max{fY(y)}=fY(0)=12π。因此M=102π

在确定了V的分布以及M的大小之后,便可以根据定理中步骤2的判决方法来生成服从指定分布的随机变量Y。具体的程序实现如下:

%-------------------正态分布-----------------------%
%参数:均值mu,方差sigma2
%mean=mu,  var=sigma2
clear all
close all
clc
mu=0;
sigma2=1;
n=10;%x的取值为正负无穷大,
%-------------------由内置函数直接给出----------------%
%正态分布的产生X
X=normrnd(mu,sqrt(sigma2));%产生均值mu,方差sigma2的正态分布

%正态分布的cdf
x=0:.1:n;
Fx=normcdf(x,mu,sqrt(sigma2));
% figure
% plot(x,Fx,'-')
% title('正态分布的cdf')

%指数分布的pdf
x=-5:.1:5;
Px=normpdf(x,mu,sqrt(sigma2));
figure
plot(x,Px,'b-')
hold on

%------由舍选法推导出--------%

N=100;
A=-5;%A,B位均匀分布的取值区间
B=5;

i=1;
while(i<=N)
    U=unifrnd(0,1);%服从(0,1)的均匀分布
    V=unifrnd(A,B);%服从(A,B)的均匀分布
    M=1/sqrt(2*pi)*(B-A);%计算得到M
    if(U<1/M*1/sqrt(2*pi*sigma2)*exp(-(V-mu)^2/2/sigma2));%由定理得到的公式来生成随机变量X2
        X2(i)=V;%X2就是我们要生成的指定分布的随机变量
        i=i+1;
    end  
end

%下面的程序是计算通过舍去法生成的正态分布X2的pdf
Max=ceil(max(X2));
step=1;
range=A:step:B;

for i=1:length(range)-1
    YY(i)=sum(range(i)<=X2&X2<=range(i+1))/N/step;
    XX(i)=(range(i)+range(i+1))/2;
end

plot(XX,YY,'ro')
hold on
title('正态分布的pdf')
legend('内部函数产生','舍取法产生')

结果显示如下:
这里写图片描述

注意:使用这种方法的时候必须使V服从合适的分布来保证M<+,如若找不到这样的分布,则可以参考Markov Chain Monte Carlo(MCMC)方法。

特殊方法

上述的两种通用方法基本上可以用均匀分布产生大多数连续分布,不过由于每种分布有着各自的特性,因此也可以通过特殊的方法来生成。下面以生成标准正态分布(正态分布性质表明:任何正态分布都可以由标准正态分布转化得到)为例:

中心极限定理法

中心极限定理是概率论中的一组定理。中心极限定理说明,大量相互独立的随机变量,其均值的分布以正态分布为极限。这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量之和近似服从正态分布的条件。(摘自维基百科)
我们由中心极限定理可知,多个独立同分布的随机变量的和服从正态分布,而关于这个正态分布的均值和方差的确定,我们可以依据林德伯格-列维定理:
林德伯格-列维(Lindeberg-Levy)定理
设随机变量X1,X2,,Xn,且具有有限的数学期望E(Xi)=u,D(Xi)=σ2=0(i=1,2,,n)。记X¯=1ni=1nXi,Y=X¯uσ/n,则limnP(Y<z)=Φ(z),其中Φ(z)是标准正态分布的分布函数。

在程序实现中,我利用10个相互独立的服从区间55的均匀分布来生成标准正态分布Y。而由公式可知,区间01的均匀分布的均值为u=5+52=0,σ2=(5(5))2/12=100/12.因此我们需要生成的服从标准正态的随机变量的表达式为:Y=X¯0.5100/12/n具体程序实现如下:

%-------------------正态分布-----------------------%
%参数:均值mu,方差sigma2
%mean=mu,  var=sigma2
clear all
close all
clc
mu=0;
sigma2=1;
n=10;%x的取值为正负无穷大,
%------------------由内置函数直接给出--------------%
%正态分布的产生X
X=normrnd(mu,sqrt(sigma2));%产生均值mu,方差sigma2的正态分布

%正态分布的cdf
x=0:.1:n;
Fx=normcdf(x,mu,sqrt(sigma2));
% figure
% plot(x,Fx,'-')
% title('正态分布的cdf')

%指数分布的pdf
x=-5:.1:5;
Px=normpdf(x,mu,sqrt(sigma2));
figure
plot(x,Px,'b-')
hold on
%-------------------由中心极限定理推导出---------------------%
N=1000;%样本点数
A=-5;%A,B位均匀分布的取值区间
B=5;

for i=1:10
U(i,1:N)=unifrnd(A,B,1,N);%U存储10个独立的服从均匀分布的随机变量
end
meanX=mean(U);
X2=(meanX-(A+B)/2)/sqrt((B-A)^2/12)*sqrt(10);%由林德伯格-列维定理的公式知X2服从正态分布
mean(X2);

%下面的程序是计算通过中心极限定理法生成的正态分布X2的pdf
Max=ceil(max(X2));
step=1;
range=A:step:B;

for i=1:length(range)-1
    YY(i)=sum(range(i)<=X2&X2<=range(i+1))/N/step;
    XX(i)=(range(i)+range(i+1))/2;
end

plot(XX,YY,'ro')
hold on
title('正态分布的pdf')
legend('内部函数产生','中心极限定理法产生')

显示结果如下:
这里写图片描述

Box-Muller法

基本思想:假设U,V是两个相互独立的且服从区间在01的均匀分布,并且随机变量X,Y的表达式如下:

X=2lnUcos(2πV),Y=2lnUsin(2πV)

X,Y是相互独立的,并且服从标准正态分布。

具体的程序实现如下:

%-------------------正态分布-----------------------%
%参数:均值mu,方差sigma2
%mean=mu,  var=sigma2
clear all
close all
clc
mu=0;
sigma2=1;
n=10;%x的取值为正负无穷大,
%--------------------由内置函数直接给出----------------------%
%正态分布的产生X
X=normrnd(mu,sqrt(sigma2));%产生均值mu,方差sigma2的正态分布

%正态分布的cdf
x=0:.1:n;
Fx=normcdf(x,mu,sqrt(sigma2));
% figure
% plot(x,Fx,'-')
% title('正态分布的cdf')

%指数分布的pdf
x=-5:.1:5;
Px=normpdf(x,mu,sqrt(sigma2));
figure
plot(x,Px,'r-')
hold on

%-----------------------Box-Muller法-----------------------%
N=1000;
U=rand(1,N);%U,V都是服从(0,1)的均匀分布
V=rand(1,N);
A=-5;
B=5;
R=sqrt(-2.*log(U));
theta=2*pi*V;

X2=R.*cos(theta);
Y2=R.*sin(theta);%X,Y都是服从n(0,1)的正态分布

%下面的程序是计算通过Box-Muller法生成的正态分布X的pdf
Max=ceil(max(X2));
step=1;
range=A:step:B;

for i=1:length(range)-1
    YY(i)=sum(range(i)<=X2&X2<=range(i+1))/N/step;
    XX(i)=(range(i)+range(i+1))/2;
end

plot(XX,YY,'bo')
hold on
title('正态分布的pdf')
legend('内部函数产生','Box-Muller法产生')

显示结果如下:
这里写图片描述

上面我们是以正态分布为例来讲述了特殊法的运用,主要是运用了正态分布与其他分布的关系:多个独立同分布的随机变量和服从正态分布;均匀分布与正态分布之间满足Box-Muller法中的关系。因此,当想要由一种分布生成另一种分布的时候,只需要知道它们之间的关系即可!

原文:http://blog.csdn.net/tengweitw/article/details/45599011

作者:nineheadedbird

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

相关文章
阿里云服务器如何登录?阿里云服务器的三种登录方法
购买阿里云ECS云服务器后如何登录?场景不同,大概有三种登录方式:
2637 0
阿里云服务器ECS远程登录用户名密码查询方法
阿里云服务器ECS远程连接登录输入用户名和密码,阿里云没有默认密码,如果购买时没设置需要先重置实例密码,Windows用户名是administrator,Linux账号是root,阿小云来详细说下阿里云服务器远程登录连接用户名和密码查询方法
10222 0
使用SSH远程登录阿里云ECS服务器
远程连接服务器以及配置环境
2167 0
使用OpenApi弹性释放和设置云服务器ECS释放
云服务器ECS的一个重要特性就是按需创建资源。您可以在业务高峰期按需弹性的自定义规则进行资源创建,在完成业务计算的时候释放资源。本篇将提供几个Tips帮助您更加容易和自动化的完成云服务器的释放和弹性设置。
11673 0
阿里云服务器安全组设置内网互通的方法
虽然0.0.0.0/0使用非常方便,但是发现很多同学使用它来做内网互通,这是有安全风险的,实例有可能会在经典网络被内网IP访问到。下面介绍一下四种安全的内网互联设置方法。 购买前请先:领取阿里云幸运券,有很多优惠,可到下文中领取。
11717 0
阿里云服务器如何登录?阿里云服务器的三种登录方法
购买阿里云ECS云服务器后如何登录?场景不同,阿里云优惠总结大概有三种登录方式: 登录到ECS云服务器控制台 在ECS云服务器控制台用户可以更改密码、更换系.
11227 0
腾讯云服务器 设置ngxin + fastdfs +tomcat 开机自启动
在tomcat中新建一个可以启动的 .sh 脚本文件 /usr/local/tomcat7/bin/ export JAVA_HOME=/usr/local/java/jdk7 export PATH=$JAVA_HOME/bin/:$PATH export CLASSPATH=.
4499 0
如何设置阿里云服务器安全组?阿里云安全组规则详细解说
阿里云安全组设置详细图文教程(收藏起来) 阿里云服务器安全组设置规则分享,阿里云服务器安全组如何放行端口设置教程。阿里云会要求客户设置安全组,如果不设置,阿里云会指定默认的安全组。那么,这个安全组是什么呢?顾名思义,就是为了服务器安全设置的。安全组其实就是一个虚拟的防火墙,可以让用户从端口、IP的维度来筛选对应服务器的访问者,从而形成一个云上的安全域。
6648 0
+关注
tengweitw
所在学校:西电 兴趣爱好:编程、英语,象棋,乒乓球 email:771257840@qq.com
159
文章
0
问答
文章排行榜
最热
最新
相关电子书
更多
《2021云上架构与运维峰会演讲合集》
立即下载
《零基础CSS入门教程》
立即下载
《零基础HTML入门教程》
立即下载