如何利用微信监管你的TF训练

简介: 这可是python啊……上itchat,弄个微信号加自己为好友(或者自己发自己),训练进展跟着一路发消息给自己就好了,做了可视化的话顺便把图也一并发过来。

原问题下的回答如下

不知道有哪些朋友是在TF/keras/chainer/mxnet等框架下用python撸的….…

这可是python啊……上itchat,弄个微信号加自己为好友(或者自己发自己),训练进展跟着一路发消息给自己就好了,做了可视化的话顺便把图也一并发过来。

然后就能安心睡觉/逛街/泡妞/写答案了。

讲道理,甚至简单的参数调整都可以照着用手机来……

大体效果如下

如何利用微信监管你的TF训练

如何利用微信监管你的TF训练

当然可以做得更全面一些。最可靠的办法自然是干脆地做一个http服务或者一个rpc,然而这样往往太麻烦。本着简单高效的原则,几行代码能起到效果方便自己当然是最好的,接入微信或者web真就是不错的选择了。只是查看的话,TensorBoard就很好,但是如果想加入一些自定义操作,还是自行定制的。echat.js做成web,或者itchat做个微信服务,都是挺不赖的选择。         

正文如下

这里折腾一个例子。以TensorFlow的example中,利用CNN处理MNIST的程序为例,我们做一点点小小的修改。

首先这里放上写完的代码:

#!/usr/bin/env python

# coding: utf-8


'''

A Convolutional Network implementation example using TensorFlow library.

This example is using the MNIST database of handwritten digits

(http://yann.lecun.com/exdb/mnist/)

Author: Aymeric Damien

Project: https://github.com/aymericdamien/TensorFlow-Examples/



Add a itchat controller with multi thread

'''


from __future__ import print_function


import tensorflow as tf


# Import MNIST data

from tensorflow.examples.tutorials.mnist import input_data


# Import itchat & threading

import itchat

import threading


# Create a running status flag

lock = threading.Lock()

running = False


# Parameters

learning_rate = 0.001

training_iters = 200000

batch_size = 128

display_step = 10


def nn_train(wechat_name, param):

   global lock, running
   # Lock
   with lock:
       running = True

   # mnist data reading
   mnist = input_data.read_data_sets("data/", one_hot=True)

   # Parameters
   # learning_rate = 0.001
   # training_iters = 200000
   # batch_size = 128
   # display_step = 10
   learning_rate, training_iters, batch_size, display_step = param

   # Network Parameters
   n_input = 784 # MNIST data input (img shape: 28*28)
   n_classes = 10 # MNIST total classes (0-9 digits)
   dropout = 0.75 # Dropout, probability to keep units

   # tf Graph input
   x = tf.placeholder(tf.float32, [None, n_input])
   y = tf.placeholder(tf.float32, [None, n_classes])
   keep_prob = tf.placeholder(tf.float32) #dropout (keep probability)


   # Create some wrappers for simplicity
   def conv2d(x, W, b, strides=1):
       # Conv2D wrapper, with bias and relu activation
       x = tf.nn.conv2d(x, W, strides=[1, strides, strides, 1], padding='SAME')
       x = tf.nn.bias_add(x, b)
       return tf.nn.relu(x)


   def maxpool2d(x, k=2):
       # MaxPool2D wrapper
       return tf.nn.max_pool(x, ksize=[1, k, k, 1], strides=[1, k, k, 1],
                           padding='SAME')


   # Create model
   def conv_net(x, weights, biases, dropout):
       # Reshape input picture
       x = tf.reshape(x, shape=[-1, 28, 28, 1])

       # Convolution Layer
       conv1 = conv2d(x, weights['wc1'], biases['bc1'])
       # Max Pooling (down-sampling)
       conv1 = maxpool2d(conv1, k=2)

       # Convolution Layer
       conv2 = conv2d(conv1, weights['wc2'], biases['bc2'])
       # Max Pooling (down-sampling)
       conv2 = maxpool2d(conv2, k=2)

       # Fully connected layer
       # Reshape conv2 output to fit fully connected layer input
       fc1 = tf.reshape(conv2, [-1, weights['wd1'].get_shape().as_list()[0]])
       fc1 = tf.add(tf.matmul(fc1, weights['wd1']), biases['bd1'])
       fc1 = tf.nn.relu(fc1)
       # Apply Dropout
       fc1 = tf.nn.dropout(fc1, dropout)

       # Output, class prediction
       out = tf.add(tf.matmul(fc1, weights['out']), biases['out'])
       return out

   # Store layers weight & bias
   weights = {
       # 5x5 conv, 1 input, 32 outputs
       'wc1': tf.Variable(tf.random_normal([5, 5, 1, 32])),
       # 5x5 conv, 32 inputs, 64 outputs
       'wc2': tf.Variable(tf.random_normal([5, 5, 32, 64])),
       # fully connected, 7*7*64 inputs, 1024 outputs
       'wd1': tf.Variable(tf.random_normal([7*7*64, 1024])),
       # 1024 inputs, 10 outputs (class prediction)
       'out': tf.Variable(tf.random_normal([1024, n_classes]))
   }

   biases = {
       'bc1': tf.Variable(tf.random_normal([32])),
       'bc2': tf.Variable(tf.random_normal([64])),
       'bd1': tf.Variable(tf.random_normal([1024])),
       'out': tf.Variable(tf.random_normal([n_classes]))
   }

   # Construct model
   pred = conv_net(x, weights, biases, keep_prob)

   # Define loss and optimizer
   cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))
   optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)

   # Evaluate model
   correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
   accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))


   # Initializing the variables
   init = tf.global_variables_initializer()

   # Launch the graph
   with tf.Session() as sess:
       sess.run(init)
       step = 1
       # Keep training until reach max iterations
       print('Wait for lock')
       with lock:
           run_state = running
       print('Start')
       while step * batch_size < training_iters and run_state:
           batch_x, batch_y = mnist.train.next_batch(batch_size)
           # Run optimization op (backprop)
           sess.run(optimizer, feed_dict={x: batch_x, y: batch_y,
                                       keep_prob: dropout})
           if step % display_step == 0:
               # Calculate batch loss and accuracy
               loss, acc = sess.run([cost, accuracy], feed_dict={x: batch_x,
                                                               y: batch_y,
                                                               keep_prob: 1.})
               print("Iter " + str(step*batch_size) + ", Minibatch Loss= " + \ 

                    "{:.6f}".format(loss) + ", Training Accuracy= " + \

                    "{:.5f}".format(acc))
               itchat.send("Iter " + str(step*batch_size) + ", Minibatch Loss= " + \

                    "{:.6f}".format(loss) + ", Training Accuracy= " + \

                            "{:.5f}".format(acc), wechat_name)
           step += 1
           with lock:
               run_state = running
       print("Optimization Finished!")
       itchat.send("Optimization Finished!", wechat_name)

       # Calculate accuracy for 256 mnist test images
       print("Testing Accuracy:", \

            sess.run(accuracy, feed_dict={x: mnist.test.images[:256],
                                       y: mnist.test.labels[:256],
                                       keep_prob: 1.}))
       itchat.send("Testing Accuracy: %s" %
           sess.run(accuracy, feed_dict={x: mnist.test.images[:256],
                                       y: mnist.test.labels[:256],
                                         keep_prob: 1.}), wechat_name)

   with lock:
       running = False


@itchat.msg_register([itchat.content.TEXT])

def chat_trigger(msg):
   global lock, running, learning_rate, training_iters, batch_size, display_step
   if msg['Text'] == u'开始':
       print('Starting')
       with lock:
           run_state = running
       if not run_state:
           try:
               threading.Thread(target=nn_train, args=(msg['FromUserName'], (learning_rate, training_iters, batch_size, display_step))).start()
           except:
               msg.reply('Running')
   elif msg['Text'] == u'停止':
       print('Stopping')
       with lock:
           running = False
   elif msg['Text'] == u'参数':
       itchat.send('lr=%f, ti=%d, bs=%d, ds=%d'%(learning_rate, training_iters, batch_size, display_step),msg['FromUserName'])
   else:
       try:
           param = msg['Text'].split()
           key, value = param
           print(key, value)
           if key == 'lr':
               learning_rate = float(value)
           elif key == 'ti':
               training_iters = int(value)
           elif key == 'bs':
               batch_size = int(value)
           elif key == 'ds':
               display_step = int(value)
       except:
           pass



if __name__ == '__main__':
   itchat.auto_login(hotReload=True)
   itchat.run()

这段代码里面,我所做的修改主要是:

0.导入了itchat和threading

1. 把原本的脚本里网络构成和训练的部分甩到了一个函数nn_train里

def nn_train(wechat_name, param):
   global lock, running
   # Lock
   with lock:
       running = True

   # mnist data reading
   mnist = input_data.read_data_sets("data/", one_hot=True)

   # Parameters
   # learning_rate = 0.001
   # training_iters = 200000
   # batch_size = 128
   # display_step = 10
   learning_rate, training_iters, batch_size, display_step = param

   # Network Parameters
   n_input = 784 # MNIST data input (img shape: 28*28)
   n_classes = 10 # MNIST total classes (0-9 digits)
   dropout = 0.75 # Dropout, probability to keep units

   # tf Graph input
   x = tf.placeholder(tf.float32, [None, n_input])
   y = tf.placeholder(tf.float32, [None, n_classes])
   keep_prob = tf.placeholder(tf.float32) #dropout (keep probability)


   # Create some wrappers for simplicity
   def conv2d(x, W, b, strides=1):
       # Conv2D wrapper, with bias and relu activation
       x = tf.nn.conv2d(x, W, strides=[1, strides, strides, 1], padding='SAME')
       x = tf.nn.bias_add(x, b)
       return tf.nn.relu(x)


   def maxpool2d(x, k=2):
       # MaxPool2D wrapper
       return tf.nn.max_pool(x, ksize=[1, k, k, 1], strides=[1, k, k, 1],
                           padding='SAME')


   # Create model
   def conv_net(x, weights, biases, dropout):
       # Reshape input picture
       x = tf.reshape(x, shape=[-1, 28, 28, 1])

       # Convolution Layer
       conv1 = conv2d(x, weights['wc1'], biases['bc1'])
       # Max Pooling (down-sampling)
       conv1 = maxpool2d(conv1, k=2)

       # Convolution Layer
       conv2 = conv2d(conv1, weights['wc2'], biases['bc2'])
       # Max Pooling (down-sampling)
       conv2 = maxpool2d(conv2, k=2)

       # Fully connected layer
       # Reshape conv2 output to fit fully connected layer input
       fc1 = tf.reshape(conv2, [-1, weights['wd1'].get_shape().as_list()[0]])
       fc1 = tf.add(tf.matmul(fc1, weights['wd1']), biases['bd1'])
       fc1 = tf.nn.relu(fc1)
       # Apply Dropout
       fc1 = tf.nn.dropout(fc1, dropout)

       # Output, class prediction
       out = tf.add(tf.matmul(fc1, weights['out']), biases['out'])
       return out

   # Store layers weight & bias
   weights = {
       # 5x5 conv, 1 input, 32 outputs
       'wc1': tf.Variable(tf.random_normal([5, 5, 1, 32])),
       # 5x5 conv, 32 inputs, 64 outputs
       'wc2': tf.Variable(tf.random_normal([5, 5, 32, 64])),
       # fully connected, 7*7*64 inputs, 1024 outputs
       'wd1': tf.Variable(tf.random_normal([7*7*64, 1024])),
       # 1024 inputs, 10 outputs (class prediction)
       'out': tf.Variable(tf.random_normal([1024, n_classes]))
   }

   biases = {
       'bc1': tf.Variable(tf.random_normal([32])),
       'bc2': tf.Variable(tf.random_normal([64])),
       'bd1': tf.Variable(tf.random_normal([1024])),
       'out': tf.Variable(tf.random_normal([n_classes]))
   }

   # Construct model
   pred = conv_net(x, weights, biases, keep_prob)

   # Define loss and optimizer
   cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))
   optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)

   # Evaluate model
   correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
   accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))


   # Initializing the variables
   init = tf.global_variables_initializer()

   # Launch the graph
   with tf.Session() as sess:
       sess.run(init)
       step = 1
       # Keep training until reach max iterations
       print('Wait for lock')
       with lock:
           run_state = running
       print('Start')
       while step * batch_size < training_iters and run_state:
           batch_x, batch_y = mnist.train.next_batch(batch_size)
           # Run optimization op (backprop)
           sess.run(optimizer, feed_dict={x: batch_x, y: batch_y,
                                       keep_prob: dropout})
           if step % display_step == 0:
               # Calculate batch loss and accuracy
               loss, acc = sess.run([cost, accuracy], feed_dict={x: batch_x,
                                                               y: batch_y,
                                                               keep_prob: 1.})
               print("Iter " + str(step*batch_size) + ", Minibatch Loss= " + \

                    "{:.6f}".format(loss) + ", Training Accuracy= " + \

                    "{:.5f}".format(acc))
               itchat.send("Iter " + str(step*batch_size) + ", Minibatch Loss= " + \

                    "{:.6f}".format(loss) + ", Training Accuracy= " + \

                            "{:.5f}".format(acc), wechat_name)
           step += 1
           with lock:
               run_state = running
       print("Optimization Finished!")
       itchat.send("Optimization Finished!", wechat_name)

       # Calculate accuracy for 256 mnist test images
       print("Testing Accuracy:", \

            sess.run(accuracy, feed_dict={x: mnist.test.images[:256],
                                       y: mnist.test.labels[:256],
                                       keep_prob: 1.}))
       itchat.send("Testing Accuracy: %s" %
           sess.run(accuracy, feed_dict={x: mnist.test.images[:256],
                                       y: mnist.test.labels[:256],
                                         keep_prob: 1.}), wechat_name)

   with lock:
       running = False

这里大部分是跟原本的代码一样的,不过首先所有print的地方都加了个itchat.send来输出日志,此外加了个带锁的状态量running用来做运行开关。此外,部分参数是通过函数参数传入的。

然后呢,写了个itchat的handler

@itchat.msg_register([itchat.content.TEXT])

def chat_trigger(msg):
   global lock, running, learning_rate, training_iters, batch_size, display_step
   if msg['Text'] == u'开始':
       print('Starting')
       with lock:
           run_state = running
       if not run_state:
           try:
               threading.Thread(target=nn_train, args=(msg['FromUserName'], (learning_rate, training_iters, batch_size, display_step))).start()
           except:
               msg.reply('Running')

作用是,如果收到微信消息,内容为『开始』,那就跑训练的函数(当然,为了防止阻塞,放在了另一个线程里)

最后再在脚本主流程里使用itchat登录微信并且启动itchat的服务,这样就实现了基本的控制。

if __name__ == '__main__':
   itchat.auto_login(hotReload=True)
   itchat.run()

但是我们不满足于此,我还希望可以对流程进行一些控制,对参数进行一些修改,于是乎:

@itchat.msg_register([itchat.content.TEXT])

def chat_trigger(msg):
   global lock, running, learning_rate, training_iters, batch_size, display_step
   if msg['Text'] == u'开始':
       print('Starting')
       with lock:
           run_state = running
       if not run_state:
           try:
               threading.Thread(target=nn_train, args=(msg['FromUserName'], (learning_rate, training_iters, batch_size, display_step))).start()
           except:
               msg.reply('Running')
   elif msg['Text'] == u'停止':
       print('Stopping')
       with lock:
           running = False
   elif msg['Text'] == u'参数':
       itchat.send('lr=%f, ti=%d, bs=%d, ds=%d'%(learning_rate, training_iters, batch_size, display_step),msg['FromUserName'])
   else:
       try:
           param = msg['Text'].split()
           key, value = param
           print(key, value)
           if key == 'lr':
               learning_rate = float(value)
           elif key == 'ti':
               training_iters = int(value)
           elif key == 'bs':
               batch_size = int(value)
           elif key == 'ds':
               display_step = int(value)
       except:
           pass

通过这个,我们可以在epoch中途停止(因为nn_train里通过检查running标志来确定是否需要停下来),也可以在训练开始前调整learning_rate等几个参数。

实在是很简单……



本文作者:Non
本文转自雷锋网禁止二次转载, 原文链接
目录
相关文章
|
5月前
|
JavaScript Java 测试技术
基于SpringBoot+Vue+uniapp微信小程序的球队训练信息管理系统的详细设计和实现
基于SpringBoot+Vue+uniapp微信小程序的球队训练信息管理系统的详细设计和实现
|
2月前
|
小程序 JavaScript Java
微信小程序的后端开发需要使用什么语言?
【8月更文挑战第22天】微信小程序的后端开发需要使用什么语言?
323 65
ly~
|
9天前
|
存储 供应链 小程序
除了微信小程序,PHP 还可以用于开发哪些类型的小程序?
除了微信小程序,PHP 还可用于开发多种类型的小程序,包括支付宝小程序、百度智能小程序、抖音小程序、企业内部小程序及行业特定小程序。在电商、生活服务、资讯、工具、娱乐、营销等领域,PHP 能有效管理商品信息、订单处理、支付接口、内容抓取、复杂计算、游戏数据、活动规则等多种业务。同时,在企业内部,PHP 可提升工作效率,实现审批流程、文件共享、生产计划等功能;在医疗和教育等行业,PHP 能管理患者信息、在线问诊、课程资源、成绩查询等重要数据。
ly~
42 6
|
8天前
|
小程序 JavaScript API
微信小程序开发学习之页面导航(声明式导航和编程式导航)
这篇文章介绍了微信小程序中页面导航的两种方式:声明式导航和编程式导航,包括如何导航到tabBar页面、非tabBar页面、后退导航,以及如何在导航过程中传递参数和获取传递的参数。
微信小程序开发学习之页面导航(声明式导航和编程式导航)
|
2月前
|
小程序 JavaScript
Taro@3.x+Vue@3.x+TS开发微信小程序,使用轮播图
本文介绍了使用 Taro 和 Vue 创建轮播组件的两种方法:一是通过 `&lt;swiper&gt;` 实现,二是利用 Nut UI 的 `&lt;nut-swiper&gt;` 组件实现。
Taro@3.x+Vue@3.x+TS开发微信小程序,使用轮播图
|
22天前
|
存储 移动开发 监控
微信支付开发避坑指南
【9月更文挑战第11天】在进行微信支付开发时,需遵循官方文档,确保权限和参数配置正确。开发中应注重安全,验证用户输入,合理安排接口调用顺序,并处理异常。上线后需实时监控支付状态,定期检查配置,关注安全更新,确保系统稳定运行。
|
29天前
|
移动开发 小程序 JavaScript
uni-app开发微信小程序
本文详细介绍如何使用 uni-app 开发微信小程序,涵盖需求分析、架构思路及实施方案。主要功能包括用户登录、商品列表展示、商品详情、购物车及订单管理。技术栈采用 uni-app、uView UI 和 RESTful API。文章通过具体示例代码展示了从初始化项目、配置全局样式到实现各页面组件及 API 接口的全过程,并提供了完整的文件结构和配置文件示例。此外,还介绍了微信授权登录及后端接口模拟方法,确保项目的稳定性和安全性。通过本教程,读者可快速掌握使用 uni-app 开发微信小程序的方法。
57 3
|
2月前
|
小程序
Taro@3.x+Vue@3.x+TS开发微信小程序,设置转发分享
本文介绍了Taro中`useShareAppMessage`的使用方法,需在页面配置`enableShareAppMessage: true`并重新编译。
Taro@3.x+Vue@3.x+TS开发微信小程序,设置转发分享
|
2月前
|
小程序 数据安全/隐私保护
Taro@3.x+Vue@3.x+TS开发微信小程序,网络请求封装
在 `src/http` 目录下创建 `request.ts` 文件,并配置 Taro 的网络请求方法 `Taro.request`,支持多种 HTTP 方法并处理数据加密。
Taro@3.x+Vue@3.x+TS开发微信小程序,网络请求封装
|
2月前
|
小程序
Taro@3.x+Vue@3.x+TS开发微信小程序,上传文件
本文介绍如何在Taro项目中使用Nut UI的`&lt;nut-uploader/&gt;`组件实现图片上传功能,并通过示例代码展示了自定义上传逻辑的方法。
Taro@3.x+Vue@3.x+TS开发微信小程序,上传文件

热门文章

最新文章

下一篇
无影云桌面