【评分卡】0925_信用卡消费分析_215

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,5000CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: 0925_信用卡消费分析_215<br />数据源:<br />数据大小:1.36 MB<br />字段数量:25<br />使用组件:分箱,样本稳定指数(PSI),评分卡训练,拆分,评分卡预测,读数据表<br />
相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
目录
相关文章
|
1月前
|
机器学习/深度学习 运维 算法
零基础入门金融风控之贷款违约预测Task3:特征工程
零基础入门金融风控之贷款违约预测Task3:特征工程
35 0
|
6月前
|
弹性计算 运维 Shell
基于销售数据预测的智能补货
【4月更文挑战第30天】
84 0
|
5月前
|
数据采集 机器学习/深度学习 数据可视化
使用决策树对金融贷款数据进行分析
使用决策树对金融贷款数据进行分析
103 2
|
6月前
|
机器学习/深度学习 算法 数据可视化
【视频】从决策树到随机森林:R语言信用卡违约分析信贷数据实例|数据分享
【视频】从决策树到随机森林:R语言信用卡违约分析信贷数据实例|数据分享
|
机器学习/深度学习 Python
基于LightGBM实现银行客户信用违约预测
基于LightGBM实现银行客户信用违约预测
204 1
|
机器学习/深度学习 数据可视化 数据挖掘
数据分析案例-基于随机森林对影响信用卡审批结果和用户信用等级的特征分析
数据分析案例-基于随机森林对影响信用卡审批结果和用户信用等级的特征分析
205 0
数据分析案例-基于随机森林对影响信用卡审批结果和用户信用等级的特征分析
按键精灵实现交易开拓者33个品种回测时间和交易费用的设置
按键精灵实现交易开拓者33个品种回测时间和交易费用的设置
218 0
ML之RF:利用Pipeline(客户年龄/职业/婚姻/教育/违约/余额/住房等)预测客户是否购买该银行的产品二分类(预测、推理)
ML之RF:利用Pipeline(客户年龄/职业/婚姻/教育/违约/余额/住房等)预测客户是否购买该银行的产品二分类(预测、推理)
ML之RF:利用Pipeline(客户年龄/职业/婚姻/教育/违约/余额/住房等)预测客户是否购买该银行的产品二分类(预测、推理)
|
数据挖掘 Python
贷款违约预测-Task2 数据分析(中)
贷款违约预测-Task2 数据分析(中)
250 0
贷款违约预测-Task2 数据分析(中)
|
机器学习/深度学习 数据可视化 数据挖掘
贷款违约预测-Task2 数据分析(上)
贷款违约预测-Task2 数据分析(上)
336 0
贷款违约预测-Task2 数据分析(上)

热门文章

最新文章

下一篇
无影云桌面