使用马尔可夫链对营销中的渠道归因建模

简介: 使用马尔可夫链对营销中的渠道归因建模

介绍

 

在这篇文章中,我们看看什么是渠道归因,以及它如何与马尔可夫链的概念联系起来。我们还将通过一个电子商务公司的案例研究来理解这个概念在理论上和实践上如何运作(使用R)。


什么是渠道归因?

Google Analytics为归因建模提供了一套标准规则。根据Google的说法,“归因模型是决定销售和转化功劳如何分配给转化路径中的接触点的规则或一组规则。例如,Google Analytics中的最后一次互动模型会为紧接销售或转化之前的最终接触点(即,点击次数)分配100%的功劳。相比之下,第一个互动模型为启动转化路径的接触点分配100%的功劳。“

我们将在本文后面看到最后一个交互模型和第一个交互模型。在此之前,让我们举一个小例子,进一步了解渠道归因。假设我们有一个转换图,如下所示:

 

在上述情况下,客户可以通过频道'C1'或频道'C2'开始他们的旅程。以C1或C2开始的概率为50%(或0.5)。我们首先计算转换的总体概率,然后进一步查看每个通道的影响。

P(转换)= P(C1→C2→C3→转换)+ P(C2→C3→转换)

= 0.5 * 0.5 * 1 * 0.6 + 0.5 * 1 * 0.6

= 0.15 + 0.3

= 0.45


马尔可夫链

马尔可夫链是一个过程,它映射运动并给出概率分布,从一个状态转移到另一个状态。马尔可夫链由三个属性定义:

状态空间 - 处理可能存在的所有状态的集合

转换操作符 - 从一个状态转移到另一个状态的概率

当前状态概率分布 - 在过程开始时处于任何一个状态的概率分布

我们知道我们可以通过的阶段,从每条路径移动的概率以及我们知道当前状态的可能性。这看起来与马尔可夫链相似,不是吗?

事实上,这是一个马尔可夫链的应用。我们稍后会回来; 现在让我们坚持我们的例子。如果我们要弄清楚渠道1在我们的客户从始至终转换的旅程中的贡献,我们将使用去除效果的原则。去除效果原则说,如果我们想要在客户旅程中找到每个频道的贡献,我们可以通过删除每个频道并查看在没有该频道的情况下发生了多少次转化。

例如,我们假设我们必须计算通道C1的贡献。我们将从模型中删除通道C1,并查看图片中没有C1的情况下发生了多少次转换,即所有通道完好无损时的总转换次数。我们计算通道C1:

 

P(去除C1后的转换)= P(C2→C3→转换)

= 0.5 * 1 * 0.6

= 0.3

30%的客户互动可以在没有C1频道的情况下进行转换; 而C1完好无损,45%的互动可以转换。所以,C1的去除效果是

0.3 / 0.45 = 0.666。

C2和C3的去除效果为1(您可以尝试计算,但直觉地认为,如果我们要删除或者C2或C3,我们将能够完成任何转换?)。

这是马尔可夫链的一个非常有用的应用。在上述情况下,所有通道--C1,C2,C3(在不同阶段)被称为转换状态 ; 而从一个信道移动到另一个信道的概率称为转移概率。

客户旅程是一系列渠道,可以看作是一个有向马尔可夫图中的一个链,其中每个顶点都是一个状态(渠道/接触点),每条边表示从一个状态移动到另一个状态的转移概率。由于到达状态的概率仅取决于以前的状态,因此可以将其视为无记忆马尔可夫链。


电子商务公司案例研究

让我们进行真实案例研究,看看我们如何实施渠道归因建模。

一家电子商务公司进行了一项调查并收集了客户的数据。这可以被认为是具有代表性的人群。在调查中,公司收集了有关客户访问各种触点的数据,最终在其网站上购买该产品。

总共有19个渠道,客户可以遇到产品或产品广告。在19个频道之后,还有三种情况:

#20 - 客户决定购买哪种设备;

#21 - 客户已经做出最终购买,并且;

#22 - 客户尚未决定。

渠道的总体分类如下:

类别渠道

网站(1,2,3)公司网站或竞争对手的网站

研究报告(4,5,6,7,8)行业咨询研究报告

在线/评论(9,10)有机搜索,论坛

价格比较(11)聚合

朋友(12,13)社交网络

专家(14)专家在线或离线

零售店(15,16,17)物理商店

杂项。(18,19)其他如促销活动在不同的地点

现在,我们需要帮助电子商务公司确定投资营销渠道的正确策略。应该关注哪些渠道?公司应该投资哪些渠道?我们将在下一节中使用R来解决这个问题。


使用R的实现

尝试在R中的实现并检查结果。

输出:


R05A.01R05A.02R05A.03R05A.04... ..R05A.18R05A.19R05A.20


1643 NANANA


21910NANANA


9132016NANANA


8152021NANANA


1691320NANANA


11184NANANA

我们将进行一些数据处理,将其带入一个阶段,我们可以将其用作模型中的输入。然后,我们将确定哪些客户旅程已进行最终转换(在我们的情况下,所有旅程都已达到最终转换状态)。

我们将创建一个特定格式的变量'路径',可以作为模型的输入。另外,我们将使用“dplyr”包找出每条路径的总发生次数。


路径转变




1> 1> 1> 201


1> 1> 12> 121


1> 1> 14> 13> 12> 201


1> 1> 3> 13> 3> 201


1> 1> 3> 17> 171


> 1> 6> 1> 12> 20> 121

输出:

路径转变



1> 1> 1> 201


1> 1> 12> 121


1> 1> 14> 13> 12> 201


1> 1> 3> 13> 3> 201


1> 1> 3> 17> 171


1> 1> 6> 1> 12> 20> 121

现在,我们将创建一个启发式模型和一个马尔科夫模型,将两者结合起来,然后检查最终结果。

输出:



CHANNEL_NAMEfirst_touch_conversions... ..
linear_touch_conversionslinear_touch_value


113073.77366173.773661


200473.998171473.998171


127576.12786376.127863


143456.33574456.335744


13320204.039552204.039552


3168117.609677117.609677


173176.58384776.583847


65054.70712454.707124


85653.67786253.677862


10547211.822393211.822393


1166107.109048107.109048


16111156.049086156.049086


219994.11166894.111668


4231250.784033250.784033


72633.43599133.435991
 

输出:



CHANNEL_NAMEtotal_conversiontotal_conversion_value


182.48296182.482961


20432.40615432.40615


1283.94258783.942587


1463.0867663.08676


13195.751556195.751556


3122.973752122.973752


1783.86672483.866724


663.28082863.280828


861.01611561.016115


10209.035208209.035208


11118.563707118.563707


16158.692238158.692238


298.06719998.067199


4223.709091223.709091


741.91924841.919248

在进一步讨论之前,我们先来了解一下我们上面看到的一些术语的含义。

第一次触摸转换:当该频道是客户的第一个触摸点时,通过频道进行的转换。第一个触点获得100%的功劳。

上次触摸转换:当该频道是客户的最后一个接触点时,通过频道发生的转化。100%信用给予最后的接触点。

回到R代码,让我们合并这两个模型,并以更容易理解的视觉吸引人的方式表示输出。

从上图中可以清楚地看到情景。从第一次触摸转换角度来看,频道10,频道13,频道2,频道4和频道9非常重要; 而从最后接触的角度来看,第20频道是最重要的(在我们的例子中,应该是因为客户决定购买哪种产品)。就线性触摸转换而言,通道20,通道4和通道9是重要的。从总转换角度来看,频道10,13,20,4和9非常重要。


结束

在上面的图表中,我们已经能够找出哪些是我们关注的重要渠道,哪些可以被忽略或忽视。这种情况使我们对客户分析领域马尔可夫链模型的应用有了很好的了解。电子商务公司现在可以自信地创建他们的营销策略,并使用数据驱动的见解分配他们的营销预算。

相关文章
|
2月前
|
机器学习/深度学习 数据采集 数据挖掘
特征工程在营销组合建模中的应用:基于因果推断的机器学习方法优化渠道效应估计
因果推断方法为特征工程提供了一个更深层次的框架,使我们能够区分真正的因果关系和简单的统计相关性。这种方法在需要理解干预效果的领域尤为重要,如经济学、医学和市场营销。
85 1
特征工程在营销组合建模中的应用:基于因果推断的机器学习方法优化渠道效应估计
|
7月前
|
数据处理
R语言使用马尔可夫链对营销中的渠道归因建模
R语言使用马尔可夫链对营销中的渠道归因建模
|
运维 算法 安全
营销(羊毛党)反欺诈建模全流程
欺诈是用户主观、以非法占有为目的,采用虚构事实或隐瞒事实真相的方法,骗取他人财物或金融机构信用,破坏金融管理秩序的行为。
|
人工智能 搜索推荐 新金融
《未来保险 新金融时代》——三、数字化重塑保险价值链——2.渠道营销
《未来保险 新金融时代》——三、数字化重塑保险价值链——2.渠道营销
125 0
|
机器学习/深度学习 存储 数据采集
使用Databricks进行营销效果归因分析的应用实践| 学习笔记
快速学习使用Databricks进行营销效果归因分析的应用实践
217 0
使用Databricks进行营销效果归因分析的应用实践| 学习笔记
|
开发者
营销渠道的重要性 | 学习笔记
快速学习营销渠道的重要性。
519 0
营销渠道的重要性 | 学习笔记
|
机器学习/深度学习 存储 数据采集
使用 Databricks 进行营销效果归因分析的应用实践【Databricks 数据洞察公开课】
本文介绍如何使用Databricks进行广告效果归因分析,完成一站式的部署机器学习,包括数据ETL、数据校验、模型训练/评测/应用等全流程。
773 0
使用 Databricks 进行营销效果归因分析的应用实践【Databricks 数据洞察公开课】
|
人工智能 小程序
阿里云SaaS加速器 | 夺冠互动100%+逆势增长,助力商家全渠道营销
6月16日,阿里云宣布深耕“被集成”,将投入20亿补贴,助力50家伙伴云上营收过亿。作为阿里云“被集成”战略的重要组成部分,SaaS加速器是阿里云SaaS生态的商业和技术平台,为阿里云的“被集成”提供工具与商务平台。自去年3.21 SaaS加速器发布以来,已有超过20家优质伙伴和SaaS加速器达成深度合作,其中包含夺冠互动。