《中国人工智能学会通讯》——2.5 智能汽车人机交互与人机协同技术 的研究进展

简介: 本节书摘来自CCAI《中国人工智能学会通讯》一书中的第2章,第2.5节, 更多章节内容可以访问云栖社区“CCAI”公众号查看。

2.5 智能汽车人机交互与人机协同技术 的研究进展

汽车车载人机交互系统是信息化技术发展的产物,实现了人与车之间的对话功能。驾驶员可通过该系统,掌握车辆状态信息(车速、里程、当前位置、车辆保养信息等)、路况信息和各种功能设置状态。目前具有代表性的智能人机交互系统有宝马的 iDrive、奔驰的 COMAND、奥迪的 MMI、沃尔沃的 Sensus 等。

围绕人车交互和人机协同控制问题,主要研究内容包括驾驶辅助系统的适用范围、驾驶员操纵能力、自主等级决策,以及驾驶辅助系统与驾驶员间的交互接管控制。在驾驶辅助系统适用范围方面,主要研究车辆由系统自动控制切换为由驾驶员手动控制时,驾驶员的驾驶行为和由此对驾驶安全产生的影响程度[3] ,测试并分析驾驶员手动控制和驾驶辅助系统进行切换的时机[4] ,研究驾驶员对自适应巡航系统的学习适应过程[5] 。在驾驶员差异方面,运用统计学原理,分析驾驶员反应特性各项指标与交通事故的相关性,以及这些指标在各类驾驶员之间的差异性[6-7] 。在自主等级决策方面,综合考虑多方面因素,实现自主性能评价并确定控制模式[1-2] 。在交互接管控制方面,研究驾驶员对自动刹车控制系统的适应性,分析驾驶员对自动刹车系统进行手动干预的可能性和原因[8] ,分析驾驶辅助系统与人为接管控制的差异,并研究驾驶辅助系统对驾驶员接管车辆控制能力的影响[9-10] 。

围绕驾驶员状态感知问题,通过摄像头感知驾驶员根据视觉传感器检测人的眼部动作[11] 、手部动作[12] 、头部动作 [13] 、脸部表情 [14] 、脚部动作 [15] ,采集驾驶员生理信号包括神经肌肉运动[16] 、脑电信号[17] ,判断驾驶员的活跃程度及驾驶意图。

对驾驶员驾驶行为的评判,常用的性能指标有安全性、舒适性、方向盘转角、速度等参数[18] ,此外还可以用实际驾驶路径来评价车的路径跟踪情况以及车辆行驶能力[19] 。驾驶员的驾驶行为建模研究开始于 20 世纪 60 年代[20] ,根据所依据的理论模型的不同,主要分为基于控制理论的方法、基于隐马尔科夫模型的方法、基于贝叶斯网络的方法、基于马尔可夫决策理论的方法等几类。

● 基于控制理论的驾驶行为建模方法

Reddy 和 Ellis 在文献[21]中提出了一种利用控制理论对驾驶员行为建模的方法。我国著名学者郭孔辉院士提出了预瞄 - 跟随理论[22] ,该理论考虑驾驶员预瞄、跟踪、延迟等特性,并利用该方法,建立了纵向控制和侧向控制相结合的驾驶员模型 [23]。MacAdam 利用最优控制理论对驾驶员行为进行建模[24] ,提出了高精度的驾驶员转向控制行为模型 [25] 。近年来模型预测控制(MPC)方法在汽车控制上得到了广泛的应用[27] 。此外,有些学者使用鲁棒控制 [28]以及模糊控制[29]的方法,建立驾驶员行为模型。

● 基于隐马尔科夫模型(HMM)的行为建模

如何有效地利用智能交通系统运营过程中产生反映交通以及驾驶情况的海量数据,实现对智能交通系统的控制、决策、故障诊断和驾驶员建模已成为各国学者研究的热点[30] 。Pentland 等人 [31]设计了一系列 HMM 动态模型,通过驾驶员可观测的外部动作,获得不可观测的驾驶员内部意图,识别和预测驾驶员的动作。文献 [32] 使用 HMMs 识别驾驶员换道动作。文献[33]使用HMMs建立包括直行、右转、右转后左转、右转后右转等共 11 种典型转向模式。文献 [34] 采用双层 HMM 辨识驾驶意图和预测驾驶行为。

基于 HMMs 方法的优点是对于简单的典型动作识别率很高,对单一情境训练较容易,计算量小,并且可以预测驾驶员未来一段时间的动作序列,但是当道路环境较复杂而又没有预先训练过时,则实现比较困难。

● 基于贝叶斯网络的方法

文献 [35] 利用动态贝叶斯网络和粒子滤波,建立自由行驶、跟车、超车等几个行为模式。文献 [36]使用分级贝叶斯回归,建立了驾驶员在环岛处的模型。文献 [37] 提出块稀疏贝叶斯学习框架 (BSBL),由其框架得到的算法在多任务学习、脑机接口等领域获得了很好的应用。基于贝叶斯的方法可以学习变量之间的依赖性,与 HMM 相比较有更好的泛化性能,可以实时对不同行为模式平滑切换。

● 基于马尔可夫决策理论的方法

马尔可夫决策过程 (MDP) 相对于 HMM 模型,引入对期望总代价进行估计的评价值函数,根据评价函数的最大化做出决策。基于马尔可夫决策理论的方法通常使用原始 MDP [38] 、POMDP(PartiallyObservable Markov Decision Processes), 以 及POMDP 的近似算法 MCVI、NNI 等[39] 。POMDP考虑了环境不确定性和使用者意图不确定性,考虑了驾驶员驾驶经验接近于人的驾驶。然而,POMDP 模型复杂度较高,原始 POMDP 算法求解时间在 10 s 以上,难以满足实时性需求。为此,文献 [40] 使用近似算法 MCVI 在 ROS 上运行在线POMDP 算法。

● 其他方法

除了上述几类主流方法之外,文献 [41-42] 采用 SVM 和高斯过程确认驾驶意图后,使用快速搜索随机树生成未来可能路径,并评判路径的危险程度。此外还有人工神经网络[43] 、有限状态机 (FiniteState Machine, FSM) [44] 、决策树[45]等。这些方法对于特定情景表现出了适用性,但通用性和鲁棒性有局限。

相关文章
|
9月前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能技术的探讨
人工智能的概念,人工智能的发展,人工智能的各种学派,人工智能的应用领域
395 4
|
7月前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能:有多少人工,才能有多少智能?
当下AI大模型的能力,特别是Agent领域,到底离不开多少“人工”的加持?本文将结合我的实际经验,深入探讨高质量数据与有效评价体系在Agent发展中的决定性作用,并通过编码Agent、Web Agent和GUI Agent的成熟度分析,揭示AI智能体发展面临的挑战与机遇。
308 89
|
4月前
|
机器学习/深度学习 人工智能 供应链
决策智能是新的人工智能平台吗?
决策智能融合数据、决策与行动,通过AI与自动化技术提升企业决策质量与效率,支持从辅助到自动化的多级决策模式,推动业务敏捷性与价值转化。
|
9月前
|
人工智能 语音技术
推动人工智能技术和产业变革,啥是核心驱动力?生成式人工智能认证(GAI认证)揭秘答案
人工智能(AI)正以前所未有的速度重塑世界,其发展离不开领军人才与创新生态的支持。文章探讨了AI领军人才的核心特质及培养路径,强调构建产学研深度融合的创新生态,并通过教育变革与GAI认证提升全民AI素养,为技术与产业变革提供持续动力。这不仅是推动社会高质量发展的关键,也为个人与企业带来了更多机遇。
|
9月前
|
机器学习/深度学习 人工智能 自然语言处理
生成式人工智能的价值回归:重塑技术、社会与个体的发展轨迹
生成式人工智能(Generative AI)正以前所未有的速度重塑社会面貌。它从单一决策工具转变为创造性生产力引擎,推动知识生产、艺术创作与科学研究的发展。同时,其广泛应用引发社会生产力和生产关系的深刻变革,带来就业结构变化与社会公平挑战。此外,生成式AI还面临伦理法律问题,如透明性、责任归属及知识产权等。培生公司推出的生成式AI认证项目,旨在培养专业人才,促进技术与人文融合,助力技术可持续发展。总体而言,生成式AI正从工具属性向赋能属性升华,成为推动社会进步的新引擎。
|
9月前
|
人工智能 自然语言处理 API
MCP与A2A协议比较:人工智能系统互联与协作的技术基础架构
本文深入解析了人工智能领域的两项关键基础设施协议:模型上下文协议(MCP)与代理对代理协议(A2A)。MCP由Anthropic开发,专注于标准化AI模型与外部工具和数据源的连接,降低系统集成复杂度;A2A由Google发布,旨在实现不同AI代理间的跨平台协作。两者虽有相似之处,但在设计目标与应用场景上互为补充。文章通过具体示例分析了两种协议的技术差异及适用场景,并探讨了其在企业工作流自动化、医疗信息系统和软件工程中的应用。最后,文章强调了整合MCP与A2A构建协同AI系统架构的重要性,为未来AI技术生态系统的演进提供了方向。
1331 62
|
7月前
|
机器学习/深度学习 人工智能 自动驾驶
人机融合智能 | 以人为中心的人工智能伦理体系
本章探讨“以人为中心”的人工智能伦理体系,分析人工智能伦理与传统伦理学的关系、主要分支内容及核心原则。随着人工智能技术快速发展,其在推动社会进步的同时也引发了隐私、公平、责任等伦理问题。文章指出,人工智能伦理需融入传统伦理框架,并构建适应智能技术发展的新型伦理规范体系,以确保技术发展符合人类价值观和利益。
346 4
|
7月前
|
机器学习/深度学习 人工智能 算法
人机融合智能 | 以人为中心人工智能新理念
本文探讨了“以人为中心的人工智能”(HCAI)理念,强调将人的需求、价值和能力置于AI设计与开发的核心。HCAI旨在确保AI技术服务于人类,增强而非取代人类能力,避免潜在危害。文章分析了AI的双刃剑效应及其社会挑战,并提出了HCAI的设计目标与实施路径,涵盖技术、用户和伦理三大维度。通过系统化方法,HCAI可推动AI的安全与可持续发展,为国内外相关研究提供重要参考。
518 3
|
6月前
|
机器学习/深度学习 人工智能 自然语言处理
人机融合智能 | 数据与知识双驱动式人工智能
本章系统介绍了数据驱动、知识驱动及双驱动人工智能的理论与应用。数据驱动方法依赖大数据和深度学习,在图像识别、自然语言处理等领域取得突破,但面临标注成本高、可解释性差等问题。知识驱动方法通过知识表示与推理提升系统理解能力,却在泛化性和适应性上受限。为弥补单一范式的不足,数据与知识双驱动融合两者优势,致力于构建更智能、可解释且安全可靠的AI系统,兼顾伦理与隐私保护。文章还回顾了AI发展历程,从早期神经网络到当前大规模语言模型(如GPT、BERT)的技术演进,深入解析了各类机器学习与深度学习模型的核心原理与应用场景,展望未来AI发展的潜力与挑战。
446 0
|
9月前
|
数据采集 机器学习/深度学习 人工智能
数据驱动智能,智能优化数据——大数据与人工智能的双向赋能
数据驱动智能,智能优化数据——大数据与人工智能的双向赋能
622 4