《白话深度学习与TensorFlow》——3.1 简介-阿里云开发者社区

开发者社区> 华章出版社> 正文

《白话深度学习与TensorFlow》——3.1 简介

简介: 本节书摘来自华章计算机《白话深度学习与TensorFlow》一书中的第3章,第3.1节,作者:高扬,卫峥著, 更多章节内容可以访问云栖社区“华章计算机”公众号查看。

3.1 简介

TensorFlow是一个采用数据流图(data flow graphs),用于数值计算的开源软件库。节点(nodes)在图中表示数学操作,图中的线(edges)则表示在节点间相互联系的多维数据数组,即张量(tensor)。它灵活的架构让你可以在多种平台上展开计算,例如台式计算机中的一个或多个CPU(或GPU)、服务器、移动设备等。TensorFlow 最初由Google大脑小组(隶属于Google机器智能研究机构)的研究员和工程师们开发出来,用于机器学习和深度神经网络方面的研究,但这个系统的通用性使其也可广泛用于其他计算领域。
下面这张图就是数据流图,数据流图用节点和线的有向图来描述数学计算。“节点” 一般用来表示施加的数学操作,但也可以表示数据输入(feed in)的起点/输出(push out)的终点,或者读取/写入持久变量(persistent variable)的终点。线表示节点之间的输入/输出关系。这些数据“线”可以运输“size可动态调整”的多维数据数组,即张量。张量从图中流过的直观图像是这个工具取名为“TensorFlow”的原因。一旦输入端的所有张量准备好,节点将被分配到各种计算设备完成异步并行运算。image

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

分享:

华章出版社

官方博客
官网链接