《R语言游戏数据分析与挖掘》一第3章 R语言绘图重要技术

简介: 本节书摘来华章计算机《R语言游戏数据分析与挖掘》一书中的第3章 ,谢佳标 著 更多章节内容可以访问云栖社区“华章计算机”公众号查看。

第3章

R语言绘图重要技术
R语言除了拥有良好的数据处理和分析能力外,对于展现数据也有极其灵活和强大的应用。由于用图形表达分析结果往往更直观和简单,所以对于优秀的分析报告而言,将数据结果以适当的图形方式展示后,其沟通效果和说服力会更佳。
本章将介绍如何向一幅简单的图形中添加元素,以得到更有用和更吸引人的图形,以及绘制各种类型图形的函数。

相关文章
|
2月前
|
数据挖掘 PyTorch TensorFlow
|
3月前
|
存储 数据挖掘 数据处理
R语言中的数据类型转换:解决常见问题的技术指南
【8月更文挑战第28天】数据类型转换是R语言编程中的一项基本技能,对于确保数据处理的准确性和效率至关重要。本文介绍了R中的基本数据类型及其转换方法,并探讨了解决常见问题的一些技巧。掌握这些知识和技巧,将有助于你更加高效地利用R语言进行数据分析和统计建模。
|
3月前
|
数据挖掘 数据处理 数据格式
R语言中使用readr与data.table导入数据的技术探索
【8月更文挑战第29天】`readr`和`data.table`都是R语言中非常优秀的数据导入工具,它们各有优势。`readr`提供了丰富的函数来读取各种格式的数据文件,并且支持在读取时指定列名和类型,非常适合处理小型到中型的数据集。而`data.table`的`fread`函数则以其高效的数据读取能力著称,尤其适合处理大型数据集。此外,`data.table`还提供了强大的数据处理功能,能够极大地提高数据分析的效率。 在实际应用中,我们可以根据数据的规模和格式选择合适的工具来导入数据,以便更好地进行后续的数据分析和建模工作。
|
24天前
|
机器学习/深度学习 并行计算 数据挖掘
R语言是一种强大的统计分析工具,广泛应用于数据分析和机器学习领域
【10月更文挑战第21天】R语言是一种强大的统计分析工具,广泛应用于数据分析和机器学习领域。本文将介绍R语言中的一些高级编程技巧,包括函数式编程、向量化运算、字符串处理、循环和条件语句、异常处理和性能优化等方面,以帮助读者更好地掌握R语言的编程技巧,提高数据分析的效率。
41 2
|
24天前
|
数据采集 数据可视化 数据挖掘
R语言与Python:比较两种数据分析工具
R语言和Python是目前最流行的两种数据分析工具。本文将对这两种工具进行比较,包括它们的历史、特点、应用场景、社区支持、学习资源、性能等方面,以帮助读者更好地了解和选择适合自己的数据分析工具。
25 2
|
1月前
|
数据采集 数据挖掘 API
Python数据分析加速器:深度挖掘Pandas与NumPy的高级功能
在Python数据分析的世界里,Pandas和NumPy无疑是两颗璀璨的明星,它们为数据科学家和工程师提供了强大而灵活的工具集,用于处理、分析和探索数据。今天,我们将一起深入探索这两个库的高级功能,看看它们如何成为数据分析的加速器。
41 1
|
3月前
|
数据采集 算法 数据挖掘
10余位大佬+10余年经验的结晶:Python数据分析与挖掘实战
LinkedIn 对全球超过3.3亿用户的工作经历和技能进行分析后得出,目前最炙手可热的25 项技能中,数据挖掘排名第一。那么数据挖掘是什么? 数据挖掘是从大量数据(包括文本)中挖掘出隐含的、先前未知的、对决策有潜在价值的关系、模式和趋势,并用这些知识和规则建立用于决策支持的模型,提供预测性决策支持的方法、工具和过程。数据挖掘有助于企业发现业务的趋势,揭示已知的事实,预测未知的结果,因此“数据挖掘”已成为企业保持竞争力的必要方法。 今天给小伙伴们分享的Python数据分析与数据挖掘手册是10余位数据挖掘领域资深专家和科研人员,10余年大数据挖掘咨询与实施经验结晶。从数据挖掘的应用出发,以电力、
10余位大佬+10余年经验的结晶:Python数据分析与挖掘实战
|
2月前
|
数据采集 算法 搜索推荐
R语言营销数据分析:使用R进行客户分群的实践探索
【9月更文挑战第1天】R语言以其强大的数据处理和统计分析能力,在金融数据分析、营销数据分析等多个领域发挥着重要作用。通过R语言进行客户分群,企业可以更好地理解客户需求,制定精准的营销策略,提升市场竞争力和客户满意度。未来,随着大数据和人工智能技术的不断发展,R语言在营销数据分析中的应用将更加广泛和深入。
|
3月前
|
数据采集 算法 数据挖掘
10余位大佬+10余年经验的结晶:Python数据分析与挖掘实战
LinkedIn 对全球超过3.3亿用户的工作经历和技能进行分析后得出,目前最炙手可热的25 项技能中,数据挖掘排名第一。那么数据挖掘是什么? 数据挖掘是从大量数据(包括文本)中挖掘出隐含的、先前未知的、对决策有潜在价值的关系、模式和趋势,并用这些知识和规则建立用于决策支持的模型,提供预测性决策支持的方法、工具和过程。数据挖掘有助于企业发现业务的趋势,揭示已知的事实,预测未知的结果,因此“数据挖掘”已成为企业保持竞争力的必要方法。 今天给小伙伴们分享的Python数据分析与数据挖掘手册是10余位数据挖掘领域资深专家和科研人员,10余年大数据挖掘咨询与实施经验结晶。从数据挖掘的应用出发,以电力、
|
4月前
|
数据挖掘 PyTorch TensorFlow
Python数据分析新纪元:TensorFlow与PyTorch双剑合璧,深度挖掘数据价值
【7月更文挑战第30天】随着大数据时代的发展,数据分析变得至关重要,深度学习作为其前沿技术,正推动数据分析进入新阶段。本文介绍如何结合使用TensorFlow和PyTorch两大深度学习框架,最大化数据价值。
105 8