机器学习将成为对抗蜂窝网络欺诈的秘密武器

简介:

欺诈是蜂窝网络市场中的一个大问题,而机器学习可能会是解决这个问题的一个全新方案。通信欺诈控制协会(CFCA)的2015年全球欺诈损失调查(2015 Global Fraud Loss Survey)显示,对蜂窝网络的欺诈性使用让整个行业一年的损失大概是380亿美元。

机器学习将成为对抗蜂窝网络欺诈的秘密武器

CFCA表示,欺诈者使用包括PBX黑客、订阅欺诈、经销商欺诈、服务滥用和账户接管等方法盗窃服务供应商。

卡内基.梅隆大学的电子及计算机工程系副研究教授及智能和高性能系统实验室主任Ole J. Mengshoel表示,目前业内的欺诈监测方法依赖于预先设置量和频率阀值的静态规则。

Mengshoel撰写了一篇关于该主题的研究论文,他在论文中写道,“这意味着他们只能监测符合已知特征的欺诈类型。”他表示,“欺诈专家不断努力工作以发现新的欺诈类型,但是现代网络攻击发展的速度远比分析人员编写监测欺诈规则的速度要快。”

自适应人工智能(AI)和机器学习能够帮助弥补这些弱点,并减少蜂窝服务市场中的欺诈行为。

Mengshoel表示,“Facebook、谷歌和LinkedIn之类的创新者率先使用大数据和机器学习等方法来保护他们的订阅用户,并获得洞察力。” Mengshoel表示,“新的机器学习方法建立在这样一种看法之上:只有使用大规模采用机器学习才能够实时监测出异常状况。”

Mengshoel表示,监管和非监管机器学习的结合让分析大量数据并向欺诈分析人员发出警报的时间缩短到了几秒之内。市场上已有的产品结合了大数据的深度包检测、监管和非监管机器学习以实时完成针对欺诈、异常流量和其他网络行为网络分析。

Mengshoel表示,“它们实时的测试将成就那些能够完成数据平面以及语音网络的网络分析的供应商。流量越来越多,因此也有越来越多的欺诈发生在数据平面上。”

卡内基.梅隆大学和Argyle Data(一家为移动供应商提供大数据/机器学习分析技术的供应商)的研究报告介绍了如何利用实时异常监测实现近乎实时的欺诈识别。

这份报告展示了当前的解决方案在解决数据平面上的问题是如何无能为力,以及为什么获得数据使用特征的可见性在未来将是至关重要的。因为大量的数据流经电信网络,大数据分析的能力以及使用高级机器学习分析这些数据的能力至关重要。

在他们的研究中,Mengshoel和合著者David Staub——Argyle Data的一位数据科学家——验证了一种监管和非监管的基于机器学习的方法,这种方法能够自动学习如何根据使用数据区分正常和异常呼叫模式。

欺诈解决方案不会很快就出现。正如论文中所指出的那样,对蜂窝网络的欺诈或不可接受的使用对网络用户和运营商来说,都是越来越严重的威胁,而且欺诈方式还在不断地发展变化。在这种环境下,该报告指出,需要一种复杂的、自适应的方法来识别犯罪活动。





原文发布时间为:2016年10月29日 
本文作者:作者:李超
本文来自云栖社区合作伙伴至顶网,了解相关信息可以关注至顶网。
目录
相关文章
|
26天前
|
机器学习/深度学习 人工智能 数据挖掘
打破传统:机器学习与神经网络获2024年诺贝尔物理学奖引发的思考
诺贝尔物理学奖首次授予机器学习与神经网络领域,标志该技术在物理学研究中的重要地位。本文探讨了这一决定对物理学研究的深远影响,包括数据分析、理论物理突破及未来科研方向的启示,同时分析了其对学术跨界合作与全球科研产业的影响。
49 4
|
26天前
|
机器学习/深度学习 数据采集 算法
机器学习在医疗诊断中的前沿应用,包括神经网络、决策树和支持向量机等方法,及其在医学影像、疾病预测和基因数据分析中的具体应用
医疗诊断是医学的核心,其准确性和效率至关重要。本文探讨了机器学习在医疗诊断中的前沿应用,包括神经网络、决策树和支持向量机等方法,及其在医学影像、疾病预测和基因数据分析中的具体应用。文章还讨论了Python在构建机器学习模型中的作用,面临的挑战及应对策略,并展望了未来的发展趋势。
89 1
|
1月前
|
机器学习/深度学习 自然语言处理 算法
深入理解机器学习算法:从线性回归到神经网络
深入理解机器学习算法:从线性回归到神经网络
|
1月前
|
机器学习/深度学习 人工智能 安全
人工智能与机器学习在网络安全中的应用
人工智能与机器学习在网络安全中的应用
68 0
|
2月前
|
机器学习/深度学习 人工智能 算法
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集('矮花叶病', '健康', '灰斑病一般', '灰斑病严重', '锈病一般', '锈病严重', '叶斑病一般', '叶斑病严重'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。再使用Django搭建Web网页操作平台,实现用户上传一张玉米病害图片识别其名称。
72 0
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
|
2月前
|
机器学习/深度学习 人工智能 算法
#如何看待诺贝尔物理学奖颁给了机器学习与神经网络?#
2024年诺贝尔物理学奖首次颁发给机器学习与神经网络领域的研究者,标志着这一技术对物理学及多领域应用的深远影响。机器学习和神经网络不仅在生产、金融、医疗等行业展现出高效实用性,还在物理学研究中发挥了重要作用,如数据分析、模型优化和物理量预测等,促进了物理学与人工智能的深度融合与发展。
35 0
|
2月前
|
机器学习/深度学习 算法
【机器学习】揭秘反向传播:深度学习中神经网络训练的奥秘
【机器学习】揭秘反向传播:深度学习中神经网络训练的奥秘
|
2月前
|
机器学习/深度学习 人工智能 算法
【人工智能】人工智能的历史发展与机器学习和神经网络
【人工智能】人工智能的历史发展与机器学习和神经网络
74 0
|
5天前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
42 17
|
15天前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。
下一篇
DataWorks