数据挖掘:大数据发展的核心驱动力

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

近年来,随着“大数据成为热门词汇,金融业在这一领域不断进行研究和探索。就金融业和大数据相关问题,本报记者近日专访中国民生银行发展规划资深 专家王彦博。王彦博认为,数据挖掘是大数据发展的核心驱动力,金融业依托大数据东风,通过有效运用数据挖掘,能够更好地识别客户和服务客户,实现与客户的 互利共赢。同时,他认为,贵阳在发展大数据产业中思路清晰、战略方向明确,相关政策对大数据人才具有一定吸引力,并由此带来大数据相关理念、技术、设施和 应用发展,可为大数据产业、金融行业等发展带来重大机遇。

数据挖掘:大数据发展的核心驱动力

国内大数据产业发展趋于成熟

跟国 外相比,国内的大数据发展,尤其在面向应用及相关技术方面,具有独特优势。王彦博认为,国内外在大数据应用方面的差距已逐渐缩小,甚至在有些应用领域, 国内比国外更灵活、更巧妙,这主要受益于我国人口基数大,随着大数据越来越深入人们的生活,全社会对数据智能化的需求不断增加,有效激发了市场活力,带动 相关大数据技术发展。从总体来看,美国、英国和欧洲其他国家大数据发展处于相对成熟阶段,国内大数据发展已趋于成熟。

王彦博认为,当 前,很多大数据技术应用已被金融领域所关注。全球大数据发展得益于对计算机技术开源理念的推行,而相比国外,国内创造新技术的周期可能更短、速度更快,尤 其需要满足国内庞大人口数量的广泛需求,这使国内对于大数据技术的能力要求超出国外“标准技术所达到的能力范围,促进了国内新技术的发展。国内要进一步 加强对数据应用和相关技术的梳理,使之成规模化发展、成体系化传承;应进一步加强与大数据相关的立法、制度和标准化建设,强化技术理论研究与传承,稳固大 数据的根基。

贵阳发展大数据产业潜力很大

王彦博很关注贵阳快速崛起的大数据产业。他认为,贵阳在发展大数据产业方面决心很大,战略方向明确、清晰,并且做好顶层设计,能有效吸引大数据人才,继而带来大数据理念、技术、设施和应用的发展与推广。发展大数据产业,贵阳潜力很大。

今年4月14日,全国首个大数据交易所——贵阳大数据交易所挂牌运营并完成首批大数据交易,它面向全国提供数据交易服务,旨在促进数据流通,向社会提供完善的数据交易、结算、交付、安全保障、数据资产管理和融资等综合配套服务。

贵阳大数据交易所是一个创举,是大数据产业发展不可或缺的基础保障。王彦博认为,贵阳大数据交易所为大数据产业链及大数据应用发展和价值实现提供无限可 能,给金融业提供了一种借鉴思维。金融业可以交易一些必要的数据,通过对数据的深度挖掘和利用,促进行业吃透业务,让数据创造价值,盘活整个产业。

大数据时代要善于使用‘数据拼图’

除贵阳大数据交易所外,王彦博还关注贵阳全球首个“块数据公共平台建设。

说起“块数据,先要从“条数据说起,“条数据是在某个行业和领域呈链条状串联起来的数据,比如企业掌握的电商、金融等行业数据,政府掌握的卫生、交通 等部门数据。“块数据则是以社区、城市为单元,整合这个单元里的“条数据,贵阳力争到2017年建成全球首个“块数据公共平台。

在大数据时代,各个企业和行业不应拘泥于自身的数据,要善于使用‘数据拼图’概念,实现企业与企业、企业与行业之间的互利共赢。王彦博说,通过“块数据 公共平台和大数据交易,企业掌握了新的数据,可以拼出完整的战略数据地图,在成本可控的前提下,尽可能细化数据粒度,通过开展数据挖掘实现价值创造。


本文作者:佚名

来源:51CTO

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
1月前
|
SQL 消息中间件 分布式计算
大数据-120 - Flink Window 窗口机制-滑动时间窗口、会话窗口-基于时间驱动&基于事件驱动
大数据-120 - Flink Window 窗口机制-滑动时间窗口、会话窗口-基于时间驱动&基于事件驱动
94 0
|
1月前
|
SQL 分布式计算 大数据
大数据-119 - Flink Window总览 窗口机制-滚动时间窗口-基于时间驱动&基于事件驱动
大数据-119 - Flink Window总览 窗口机制-滚动时间窗口-基于时间驱动&基于事件驱动
67 0
|
3月前
|
机器学习/深度学习 自然语言处理 算法
【数据挖掘】金山办公2020校招大数据和机器学习算法笔试题
金山办公2020校招大数据和机器学习算法笔试题的解析,涵盖了编程、数据结构、正则表达式、机器学习等多个领域的题目和答案。
99 10
|
3月前
|
数据采集 存储 NoSQL
建筑业数据挖掘:Scala爬虫在大数据分析中的作用
建筑业数据挖掘:Scala爬虫在大数据分析中的作用
|
3月前
|
自然语言处理 供应链 数据可视化
大数据在市场营销中的应用案例:精准洞察,驱动增长
【8月更文挑战第25天】大数据在市场营销中的应用案例不胜枚举,它们共同展示了大数据技术在精准营销、市场预测、用户行为分析等方面的巨大潜力。通过深度挖掘和分析数据,企业能够更加精准地洞察市场需求,优化营销策略,提升市场竞争力。未来,随着大数据技术的不断发展和普及,其在市场营销领域的应用将更加广泛和深入。
1131 3
|
3月前
|
分布式计算 并行计算 大数据
【数据挖掘】百度2015大数据云计算研发笔试卷
百度2015年大数据云计算研发笔试卷的题目总结,涵盖了Hadoop、Spark、MPI计算框架特点、TCP连接建立过程、数组最大和问题、二分查找实现以及灯泡开关问题,提供了部分题目的解析和伪代码。
54 1
|
4月前
|
存储 算法 数据可视化
云上大数据分析平台:解锁数据价值,驱动智能决策新篇章
实时性与流式处理:随着实时数据分析需求的增加,云上大数据分析平台将更加注重实时性和流式处理能力的建设。通过优化计算引擎和存储架构等技术手段,平台将能够实现对数据流的高效处理和分析,为企业提供实时决策支持。通过优化计算引擎和存储架构等技术手段,平台将能够实现对数据流的高效处理和分析,为企业提供实时决策支持。
671 8
|
4月前
|
人工智能 自然语言处理 数据管理
数据平台演进问题之自然语言处理技术在AI驱动的数据库中的作用是什么
数据平台演进问题之自然语言处理技术在AI驱动的数据库中的作用是什么
|
3月前
|
SQL 开发框架 大数据
【数据挖掘】顺丰科技2022年秋招大数据挖掘与分析工程师笔试题
顺丰科技2022年秋招大数据挖掘与分析工程师笔试题解析,涵盖了多领域选择题和编程题,包括动态规划、数据库封锁协议、概率论、SQL、排序算法等知识点。
87 0
|
4月前
|
存储 分布式计算 数据可视化
ERP系统中的大数据分析与处理:驱动企业智能决策
【7月更文挑战第29天】 ERP系统中的大数据分析与处理:驱动企业智能决策
413 0