业务治理重点:大数据智能

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

在大型企业内,信息治理专员的主要职责是确保企业数据遵循日益复杂的法规合规性规则。近年来,治理的职能不断扩大,然而,随着企业领导人开始意识到企业产生和存储的大量信息提供了一个现成的业务数据智能的资产。 信息治理专员则越来越多地被要求挖掘大数据分析,来寻找为公司创造收益的新方法,同时还需要维护法律和法规合规性。

Jeffrey Ritter,律师,同时也是牛津大学的外部讲师,最近讨论了信息治理专员是如何超越维护数据遵从公共法律和法规以外的职能。在本期问与答中,Ritter解释了公司董事会对于大数据智能的需求增加,分析投资对于这一改变的影响,以及治理专员要如何适应。

随着新的大数据产品和服务的出现,企业对于信息治理的要求是如何转变的?

Jeffrey Ritter:成功的大数据智能需要企业的历史信息,用于分析。首先,这些内容必须符合可以分析的数据类型规则。当这些数据不符合规则时,对于大数据的投资则被稀释,因为可以用于分析的数据变少。因此,信息治理专员的职责就超越了确保数据遵从公共法规。现在,信息治理还必须确保整个公司的记录通过验证,确保这些记录可以用于大数据分析。

有哪些大数据规则?

Ritter:关键是,导入的数据符合结构规则,比如数据库使用的相关信息分类和结构方案。但很多大数据分析引擎在接收和处理来自不同的数据源的数据时,结果最理想。引擎需要知道信息的来源,以及这些信息是如何被维护的。

这些规则还强调数据的溯源。信息治理团队必须在任何IT项目的前端根据这些规则制定合规性。如果他们不这样做,最终的输出数据对于大数据产生的价值创造分析可能是无用的。

你能举一些新的数据存储库的例子,是信息治理团队必须包含的吗?

Ritter:21世纪终结了结构化记录。发票、采购订单、发货通知、商业协议,所有这些传统的业务信息资产格式被拆解为大量的数据湖和数据集合,数据可以在多种结构中组合和使用。

这使得信息治理非常困难。数据流、图形数据、linux系统加载的应用执行日志,身份管理系统的验证日志,这些都不是传统的“记录”,但它们对于利用大数据获得潜在的商业利润都是至关重要的。最好的业务数据智能是由分析很多小记录产生的——这就是挑战所在。

企业领导人,和信息治理专员在信息治理上,仍然关注合规性要求的原始内容记录。但更困难的挑战则是处理这些新类型的大量数据。

许多公司的数据管理计划,要获得完成他们原本的合规性职能的资金,已经很困难了。信息治理经理要如何才能确保获得应对这些新挑战的额外资金?

Ritter:大数据分析和商业智能市场的快速增长是有原因的。数据输出在帮助企业创造新的收益,并快速做出业务决策上非常有用。当信息治理可以和管理IT系统相关联,使数据在大数据分析中更有效,它就可以帮助创造新的收益和提高业务速度。

事实上,强大的信息治理对于大数据智能的投资回报是一个有力的加速器。当信息治理专员完全投入到内容和数据溯源的设计中,数据管理成为一个积极的业务功能,远比维护原始内容记录遵循公共法律的法规,要重要的多。

原文发布时间为: 2016年5月30日
本文来自云栖社区合作伙伴至顶网,了解相关信息可以关注至顶网。
相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
17天前
|
数据采集 监控 数据管理
数据治理之道:大数据平台的搭建与数据质量管理
【10月更文挑战第26天】随着信息技术的发展,数据成为企业核心资源。本文探讨大数据平台的搭建与数据质量管理,包括选择合适架构、数据处理与分析能力、数据质量标准与监控机制、数据清洗与校验及元数据管理,为企业数据治理提供参考。
59 1
|
1月前
|
存储 数据采集 监控
大数据技术:开启智能决策与创新服务的新纪元
【10月更文挑战第5天】大数据技术:开启智能决策与创新服务的新纪元
|
3月前
|
运维 算法 数据可视化
【2021 高校大数据挑战赛-智能运维中的异常检测与趋势预测】2 方案设计与实现-Python
文章详细介绍了参加2021高校大数据挑战赛中智能运维异常检测与趋势预测任务的方案设计与Python实现,包括问题一的异常点和异常周期检测、问题二的异常预测多变量分类问题,以及问题三的多变量KPI指标预测问题的算法过程描述和代码实现。
75 0
|
22天前
|
机器学习/深度学习 人工智能 运维
智能运维:大数据与AI的融合之道###
【10月更文挑战第20天】 运维领域正经历一场静悄悄的变革,大数据与人工智能的深度融合正重塑着传统的运维模式。本文探讨了智能运维如何借助大数据分析和机器学习算法,实现从被动响应到主动预防的转变,提升系统稳定性和效率的同时,降低了运维成本。通过实例解析,揭示智能运维在现代IT架构中的核心价值,为读者提供一份关于未来运维趋势的深刻洞察。 ###
75 10
|
16天前
|
数据采集 分布式计算 大数据
数据治理之道:大数据平台的搭建与数据质量管理
【10月更文挑战第27天】在数字化时代,数据治理对于确保数据资产的保值增值至关重要。本文探讨了大数据平台的搭建和数据质量管理的重要性及实践方法。大数据平台应包括数据存储、处理、分析和展示等功能,常用工具如Hadoop、Apache Spark和Flink。数据质量管理则涉及数据的准确性、一致性和完整性,通过建立数据质量评估和监控体系,确保数据分析结果的可靠性。企业应设立数据治理委员会,投资相关工具和技术,提升数据治理的效率和效果。
49 2
|
1月前
|
存储 数据采集 分布式计算
大数据技术:开启智能时代的新引擎
【10月更文挑战第5天】大数据技术:开启智能时代的新引擎
|
3月前
|
存储 人工智能 分布式计算
阿里云智能大数据演进
本文根据7月24日飞天发布时刻产品发布会、7月5日DataFunCon2024·北京站:大数据·大模型.双核时代实录整理而成
|
4月前
|
存储 算法 数据可视化
云上大数据分析平台:解锁数据价值,驱动智能决策新篇章
实时性与流式处理:随着实时数据分析需求的增加,云上大数据分析平台将更加注重实时性和流式处理能力的建设。通过优化计算引擎和存储架构等技术手段,平台将能够实现对数据流的高效处理和分析,为企业提供实时决策支持。通过优化计算引擎和存储架构等技术手段,平台将能够实现对数据流的高效处理和分析,为企业提供实时决策支持。
676 8
|
3月前
|
机器学习/深度学习 运维 算法
【2021 高校大数据挑战赛-智能运维中的异常检测与趋势预测】1 赛后总结与分析
对2021高校大数据挑战赛中智能运维异常检测与趋势预测赛题的赛后总结与分析,涉及赛题解析、不足与改进,并提供了异常检测、异常预测和趋势预测的方法和模型选择的讨论。
110 0
【2021 高校大数据挑战赛-智能运维中的异常检测与趋势预测】1 赛后总结与分析
|
4月前
|
人工智能 数据安全/隐私保护
数据平台演进问题之智能化数据平台会面临什么样的挑战
数据平台演进问题之智能化数据平台会面临什么样的挑战