汽车+大数据=变形金刚?解读汽车大数据价值

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介:

车联网大数据

车联网是大数据应用的最佳载体

车联网是基于“人-车-路-环境”四大要素的综合系统, 每一个要素自身都存在海量可挖掘数据,而每一个要素同时又是大数据应用和变现的对象。多重数据的叠加和交互关系使得车联网大数据价值巨大。

车联网大数据

大数据应用代表向生态圈演进的新型车联网盈利模式。 目前车联网尚处于初期,商业模式仍然以 B2B 为主,能够直接付费的用户较少,而随着产业链数据的打通和互联网巨头的强势介入,后续数据运营将成为车联网向生态圈转变的关键。

车联网大数据

车联网的大数据在预测方面可以发挥到极致, 如预测交通堵塞的地段,实时交通信息,驾驶者驾驶行为分析等。

车联网大数据的应用趋势

第一, 从被动安全到主动安全发展

汽车的安全措施可以大略地分为主动安全措施(防止事故发生)和被动安全措施(减小事故后果)。目前车联网数据在被动安全(个性化保险等)领域已经有较为成熟的盈利模式。

大数据

车联网大数据

右键点击可放大

实质上,主动安全(尽量自如的操纵控制汽车的安全系统措施)才是车联网真正追求的方向,目前主要以辅助驾驶为主,而其代表的终极方向是无人驾驶。

车联网大数据

车联网数据对于主动安全的价值应用

汽车识别数据,对于非结构化道路,准确的识别,实现主动安全。主要表现在弯道识别,路边状态,附近车辆提醒等。通过各种传感器,雷达、摄像头,这样可以实时监控路边的状态。

驾驶员行为数据,对驾驶者驾驶情况的监测,如眼睛是否看前方,手是不是在方向盘上,根据车周边的状态会及时提醒给驾驶员,如果前面有车离我很近了,这个驾驶员眼睛又不在前方,这样车里面会提供预警,甚至采取措施帮助驾驶员回到正常的驾驶状态。

车与车通信数据,通过车车通信,当前车急刹车时,可以实现前面车刹车之后信息及时发出来,周边的车及时得到信息,这样给驾驶者一个提前预警。如有校车、警车或急救车在车附近,汽车会接受到信息知道旁边有特殊的车辆通过的话会提早让路,或者是减速来给车辆提供一些方便,这也是车和车和周边环境的通讯提供一些安全的保障。

汽车状态数据,胎压监测,在汽车行驶过程中对轮胎气压进行实时自动监测,并对轮胎漏气和低气压进行报警,以确保行车安全,另外其他 OBD 可提供的行车信息。

第二, 以大数据为基础向汽车后市场渗透

目前我国汽车后市场存在空间大但净利润占产业链比重较低的矛盾,而此类矛盾的核心问题之一就是信息不对称,大数据正是解决这一痛点的关键。

车联网大数据 车联网大数据

车联网大数据

随着生态系统的健全和互联网场上的介入,基于车辆数据形成的大数据产品,逐步向 O2O与汽车后市场渗透,商业模式呈现多点开花的局面。

车联网大数据

车联网产业链各环节大数据布局

上游数据采集:以四维图新为代表,“挟天子(地理信息数据入口)以令诸侯”。

车联网大数据

中游数据运营:以百度为例,以平台和人工智能切入,用大数据训练“百度大脑”,最终把控无人驾驶的终极趋势

车联网大数据

下游数据行业应用 : 百花齐放,智能停车场作为用户数据入口竞争最为激烈。

车联网大数据

对于大数据+汽车后市场应用来说,获取用户 数据是基础。 我们认为,停车应用将成为其重要的入口。首先,停车作为刚需、高频的汽车消费应用,相比较于洗车、保养等其他APP 而言,更有可能成为获取用户流量和数据的高粘性入口。其次,停车场景天然与 O2O汽车后市场服务链接,停车场景为汽车后市场服务的创业企业提供了时间和空间。停车应用平台通过与汽车后市场的服务提供商,将切入万亿级的汽车后市场。

车联网大数据


本文作者:Optimus Prime
来源:51CTO
相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
数据采集 机器学习/深度学习 人工智能
大数据分析案例-用RFM模型对客户价值分析(聚类)
大数据分析案例-用RFM模型对客户价值分析(聚类)
1346 0
大数据分析案例-用RFM模型对客户价值分析(聚类)
|
3月前
|
存储 大数据 数据挖掘
【数据新纪元】Apache Doris:重塑实时分析性能,解锁大数据处理新速度,引爆数据价值潜能!
【9月更文挑战第5天】Apache Doris以其卓越的性能、灵活的架构和高效的数据处理能力,正在重塑实时分析的性能极限,解锁大数据处理的新速度,引爆数据价值的无限潜能。在未来的发展中,我们有理由相信Apache Doris将继续引领数据处理的潮流,为企业提供更快速、更准确、更智能的数据洞察和决策支持。让我们携手并进,共同探索数据新纪元的无限可能!
162 11
|
4月前
|
机器学习/深度学习 人工智能 分布式计算
理解并利用大数据的力量:解锁数据背后的价值
【8月更文挑战第7天】大数据已成为推动社会进步和经济发展的重要力量。通过理解并利用大数据的力量,企业可以解锁数据背后的价值,优化业务流程、提升决策效率和创新能力。然而,大数据应用也面临着诸多挑战和风险,需要企业不断学习和实践以应对。相信在未来的发展中,大数据将为我们带来更多的惊喜和机遇。
|
5月前
|
存储 算法 数据可视化
云上大数据分析平台:解锁数据价值,驱动智能决策新篇章
实时性与流式处理:随着实时数据分析需求的增加,云上大数据分析平台将更加注重实时性和流式处理能力的建设。通过优化计算引擎和存储架构等技术手段,平台将能够实现对数据流的高效处理和分析,为企业提供实时决策支持。通过优化计算引擎和存储架构等技术手段,平台将能够实现对数据流的高效处理和分析,为企业提供实时决策支持。
807 8
|
7月前
|
存储 分布式计算 算法
大数据处理:挖掘价值之道
大数据处理:挖掘价值之道
|
7月前
|
存储 数据可视化 大数据
大数据分析与处理:探索数据的深层价值
大数据分析与处理:探索数据的深层价值
113 2
|
7月前
|
存储 数据采集 机器学习/深度学习
大数据分析:挖掘数据价值的技术和方法
在数字化时代,大数据已经成为企业和科研机构的重要资源之一。然而,对于海量的数据如何进行分析和挖掘却是一个巨大的挑战。本文将介绍大数据分析的基本概念、技术和方法,帮助读者了解如何利用现代技术和工具,挖掘数据中蕴藏的价值。
695 0
|
机器学习/深度学习 人工智能 Cloud Native
【大数据趋势白皮书下载】IDC: 发挥数据智能价值,推动企业数字化创新
IDC认为,从提升企业中长期发展质量、降低综合投入成本的角度出发,大数据技术领域将呈现出两个显著趋势:一体化和融合化。企业应以战略和顶层设计为先导,用体系化的思维全面构建大数据能力架构,避免形成新的数据、业务和能力孤岛。 【下载地址见文末】
【大数据趋势白皮书下载】IDC: 发挥数据智能价值,推动企业数字化创新
|
数据采集 机器学习/深度学习 算法
大数据分析案例-基于RFM模型对电商客户价值分析(聚类)
大数据分析案例-基于RFM模型对电商客户价值分析(聚类)
1103 0
大数据分析案例-基于RFM模型对电商客户价值分析(聚类)
|
大数据
下一篇
DataWorks