大数据大热知易行难 企业必须充分积累各类数据

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

日前,国务院印发《促进大数据发展行动纲要》(下称《纲要》)。《纲要》指出,2018年底前,建成国家政府数据统一开放平台。2020年底前,逐步实现信用、交通、医疗、卫生、就业、社保、地理、文化、教育、科技、资源、农业、环境、安监、金融、质量、统计、气象、海洋、企业登记监管等民生保障服务相关领域的政府数据集向社会开放。同时,强化中央财政资金引导,集中力量支持大数据核心关键技术攻关、产业链构建、重大应用示范和公共服务平台建设等。

海通证券表示,此次《纲要》的下发,促进政府数据开放、共享有望使得各行各业真正迎来大数据时代。同时,大数据全产业链的培育有望搭建中国大数据新生态,而大数据在新的垂直领域的应用将助力商业模式和变现渠道的创新和探索,有望重构产业链的价值体系。

在打破“信息孤岛”实现数据互联互通的道路上,数据的采集是需要突破的第一道关卡。北京腾云天下科技有限公司首席金融行业专家鲍忠铁对《第一财经日报》记者表示,数据采集面临数据现有存在形式的非电子化和分散度较广两大难题。

“目前,公共机构大量的数据还是以纸质化的形式存在着,特别是医疗数据、教育数据和农业数据。”鲍忠铁表示,未来如何将这些存留在纸张里的数据电子化将面临较大的挑战。

数据想要集中在统一平台上,就要实现数据的集中,但是目前大量的数据分散在省、市、乡、镇等不同的政府层级中,并不完全集中在国家层面。“数据不集中直接影响对数据背后规模发现的程度。”鲍忠铁进一步告诉《第一财经日报》,数据分散之外,在集中的过程中,数据格式不统一也是需要攻克的难题。例如,同样一条信息,A乡用6个数据来诠释,B乡用10个数据诠释,而C乡却用12个。现在距离2018年还有三年的时间,想要在三年时间做到数据标准和格式的统一化并非易事。

任何事件的发展都需要循序渐进。从政府数据的开放来看,目前政府数据可以分为三类,可以向公众公开的数据、不宜公开的敏感数据和不能公开的国家机密数据。海通证券表示,未来数据开放应该遵循分级、分层、分类逐步开放的步骤。短期来看,涉及到民生的交通、医疗、信用、社保等行业有望较早实现开放。

前海征信总经理邱寒对《第一财经日报》记者表示,大数据要产生价值存在诸多关键点,积累和整合就是其中之一。“大数据之所以不同于以往的常规数据分析,其核心在其大。只有数据够大,大到突破一定的临界点,才有可能从量变转化为质变。”邱寒表示,大包含几层意思,第一,数据的维度够丰富;第二,数据的频度够高;第三,数据的时间跨度够长。而要实现这些,企业必须充分积累各类数据。


本文作者:佚名

来源:51CTO

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
6天前
|
存储 分布式计算 数据挖掘
数据架构 ODPS 是什么?
数据架构 ODPS 是什么?
51 7
|
6天前
|
存储 分布式计算 大数据
大数据 优化数据读取
【11月更文挑战第4天】
17 2
|
19天前
|
数据采集 监控 数据管理
数据治理之道:大数据平台的搭建与数据质量管理
【10月更文挑战第26天】随着信息技术的发展,数据成为企业核心资源。本文探讨大数据平台的搭建与数据质量管理,包括选择合适架构、数据处理与分析能力、数据质量标准与监控机制、数据清洗与校验及元数据管理,为企业数据治理提供参考。
64 1
|
13天前
|
存储 大数据 定位技术
大数据 数据索引技术
【10月更文挑战第26天】
34 3
|
13天前
|
存储 大数据 OLAP
大数据数据分区技术
【10月更文挑战第26天】
46 2
|
16天前
|
消息中间件 分布式计算 大数据
数据为王:大数据处理与分析技术在企业决策中的力量
【10月更文挑战第29天】在信息爆炸的时代,大数据处理与分析技术为企业提供了前所未有的洞察力和决策支持。本文探讨了大数据技术在企业决策中的重要性和实际应用,包括数据的力量、实时分析、数据驱动的决策以及数据安全与隐私保护。通过这些技术,企业能够从海量数据中提取有价值的信息,预测市场趋势,优化业务流程,从而在竞争中占据优势。
52 2
|
18天前
|
数据采集 分布式计算 大数据
数据治理之道:大数据平台的搭建与数据质量管理
【10月更文挑战第27天】在数字化时代,数据治理对于确保数据资产的保值增值至关重要。本文探讨了大数据平台的搭建和数据质量管理的重要性及实践方法。大数据平台应包括数据存储、处理、分析和展示等功能,常用工具如Hadoop、Apache Spark和Flink。数据质量管理则涉及数据的准确性、一致性和完整性,通过建立数据质量评估和监控体系,确保数据分析结果的可靠性。企业应设立数据治理委员会,投资相关工具和技术,提升数据治理的效率和效果。
49 2
|
20天前
|
存储 安全 大数据
大数据隐私保护:用户数据的安全之道
【10月更文挑战第31天】在大数据时代,数据的价值日益凸显,但用户隐私保护问题也愈发严峻。本文探讨了大数据隐私保护的重要性、面临的挑战及有效解决方案,旨在为企业和社会提供用户数据安全的指导。通过加强透明度、采用加密技术、实施数据最小化原则、加强访问控制、采用隐私保护技术和提升用户意识,共同推动大数据隐私保护的发展。
|
24天前
|
SQL 存储 大数据
大数据中数据提取
【10月更文挑战第19天】
49 2
|
28天前
|
Oracle 大数据 数据挖掘
企业内训|大数据产品运营实战培训-某电信运营商大数据产品研发中心
本课程是TsingtaoAI专为某电信运营商的大数据产品研发中心的产品支撑组设计,旨在深入探讨大数据在电信运营商领域的应用与运营策略。通过密集的培训,从数据的本质与价值出发,系统解析大数据工具和技术的最新进展,深入剖析行业内外的实践案例。课程涵盖如何理解和评估数据、如何有效运用大数据技术、以及如何在不同业务场景中实现数据的价值转化。
38 0