数据分析如何帮产品实现用户增长?

简介:

腾讯深度报告,2016年,75%的消费者仍计划保持或增加消费支出。随着人们收入水平的提升,消费者愿意花费更高的价格来购买提高生活品质的产品与服务。对于商家而言,他们拥有多种机会吸引日渐成熟的消费者,解决他们对当前生活的不满。

举例来说,健康对于所有城市消费者而言都很重要,但是大城市上层中产阶层及富裕消费者在食品,特别是高品质的食品以及高品质的服务上花费的更多。 于是一些针对高端人群的产品应运而生。

例如针对一线白领等高端人群推出的高端餐饮电商类产品—ENJOY,为用户提供了一些经过精心筛选的餐饮产品,提供独特而稀缺的用餐体验,希望在“如何吃得更好”这一问题上为大家提供一些富有情感的食物解决方案。

随着平台上食物品类以及服务的增多,频繁给用户推送消息,由于用户的需求各不相同,给用户带来了极大的伤害。一部分人深受其害而狠狠卸载掉。对于一款产品来说,用户的严重流失是一个无法容忍的事。可是,不推送,用户无法第一时间知道平台上了什么新的品类;推送了,用户频频被消息打扰。

是否可以提供一个两全其美的方法——既可以给用户推送消息,还能够让他们看到推送的第一时间是欣喜而不是厌恶呢?

两全其美的好方法当然有——个性化推荐。

通过分析用户行为,根据用户喜好,为他们推送与之对应的产品优惠活动等消息,来吸引用户,从而提升用户留存。

用户行为路径分析是互联网行业特有的一类数据分析方法,所依赖的数据主要是服务器中的日志数据。

用户在使用App过程中的每一步都可以被记录下来,分析用户在APP或者网站中各个模块的流转规律与特点,挖掘用户的点击模式,使得用户可以便捷地依照产品设计的期望主流路径直达核心模块,这时候需要关注的便是优秀的布点策略。

通过一款基于用户洞察的精细化运营分析工具,将SDK集成到App或网站中,便能获得应用内的所有用户行为数据。

笔者认为在每个App里,不是所有事件都有着同样的价值,基于对核心事件的深度分析需求,笔者推荐大家使用层级化的自定义事件布点方式,每一个事件由三个层次组成的:事件(Event)、属性(Key)和属性值(Value)。同时,还为开发者们提供数据监测布点咨询服务,可以根据丰富的行业经验为客户提供个性化的事件布点咨询和技术支持。

分析用户行为,为用户推荐喜欢的内容,给运营策略的优化提供了科学指导,提升留存率。 一款电商类产品,订单价、订单数、支付数是运营最看中的数据。例如ENJOY,操作它的路径如图:

从其中一条路径中选取几个重要的行为建立行为漏斗。

漏斗模型通常是对用户在网站或App中一系列关键节点的转化率的描述,这些关键节点往往是我们人为指定的。

例如我们可以看到某购物App应用的购买行为的漏斗转化情况。这款购物App平台上,买家从浏览到支付成功经历了4个关键节点,商品浏览、加入购物车、结算、付款成功,从步骤1到步骤4,经历了其关键节点的人群越来越少,节点的转化率呈现出一个漏斗状的情形,我们可以针对各个环节的转化效率、运营效果及过程进行监控和管理,对于转化率较低的环节进行针对性的深入分析与改进。

其他的漏斗模型分析场景可以根据业务需求灵活运用,它拥有十分强大的漏斗分析工具,是您充分发挥自己对于数据的想象力的平台。

接下来就可以查看漏斗分析的结果了:

产品关键模块的转化率,对运营来说是一项很重要指标,运营人员的职责之一就是不断的提升重要的使用过程的转化率,来提升产品的留存率。

数据分析,是企业成长道路上,用来发现问题,提升运营效率的利器。而这些问题中,最值得被重视的就是留存率分析。

无论有多少新增用户,最终决定企业成功与否的,是用户的留存率与变现能力。花了一个周拉来1000用户,两三天后只有不足50人继续活跃,如果你不知道用户的流失原因,就无从下手去唤回流失的950多个用户,进而就演变成需要拉来20多新增才能增添一个长期活跃,然而变现率又能占长期活跃的多少呢?

这也是为什么,越来越多地企业对用户的CLV(生命周期价值)重视起来并进行分析:

  • 通过路径分析,对每一个用户的每一个行为路径(商品浏览、加入购物车、结算、付款成功)进行跟踪与记录,在此基础上分析挖掘用户路径行为特点,清楚的了解每一步的来源与去向、每一步的转化率,从而根据用户喜好为他们进行针对性推荐。
  • 通过漏斗模型,简单直观计算并展示出事件之间的转化率,为运营优化提供直观的数据,方便运营了解个性化推荐后的效果。

如此,践行用户为核心的生命周期价值分析。这样的分析价值将会成为未来创新企业的制胜法宝。


本文作者:rainful

来源:51CTO

相关文章
|
5月前
|
搜索推荐 数据可视化 数据挖掘
产品服务数据分析与报告
产品服务数据分析与报告
96 3
|
4月前
|
文字识别 算法 数据挖掘
视觉智能开放平台产品使用合集之对于统计研究和数据分析,有哪些比较好的工具推荐
视觉智能开放平台是指提供一系列基于视觉识别技术的API和服务的平台,这些服务通常包括图像识别、人脸识别、物体检测、文字识别、场景理解等。企业或开发者可以通过调用这些API,快速将视觉智能功能集成到自己的应用或服务中,而无需从零开始研发相关算法和技术。以下是一些常见的视觉智能开放平台产品及其应用场景的概览。
|
2月前
|
供应链 数据可视化 数据挖掘
【2023年第十一届泰迪杯数据挖掘挑战赛】B题:产品订单的数据分析与需求预测 建模及python代码详解 问题一
本文详细介绍了第十一届泰迪杯数据挖掘挑战赛B题的解决方案,涵盖了对产品订单数据的深入分析、多种因素对需求量影响的探讨,并建立了数学模型进行未来需求量的预测,同时提供了Python代码实现和结果可视化的方法。
77 3
【2023年第十一届泰迪杯数据挖掘挑战赛】B题:产品订单的数据分析与需求预测 建模及python代码详解 问题一
|
5月前
|
SQL Cloud Native 数据挖掘
云原生数据仓库产品使用合集之在使用 ADB 进行数据分析处理时,出现分区倾斜的情况,如何解决
阿里云AnalyticDB提供了全面的数据导入、查询分析、数据管理、运维监控等功能,并通过扩展功能支持与AI平台集成、跨地域复制与联邦查询等高级应用场景,为企业构建实时、高效、可扩展的数据仓库解决方案。以下是对AnalyticDB产品使用合集的概述,包括数据导入、查询分析、数据管理、运维监控、扩展功能等方面。
|
2月前
|
机器学习/深度学习 数据采集 数据挖掘
【2023年第十一届泰迪杯数据挖掘挑战赛】B题:产品订单的数据分析与需求预测 建模及python代码详解 问题二
本文提供了第十一届泰迪杯数据挖掘挑战赛B题问题二的详细解题步骤,包括时间序列预测模型的建立、多元输入时间预测问题的分析、时间序列预测的建模步骤、改进模型的方法,以及使用Python进行SARIMA模型拟合和预测的具体实现过程。
53 1
|
2月前
|
供应链 算法 数据挖掘
【2023年第十一届泰迪杯数据挖掘挑战赛】B题:产品订单的数据分析与需求预测 23页论文及实现代码
本文介绍了2023年第十一届泰迪杯数据挖掘挑战赛B题的解决方案,深入分析了产品订单数据,并使用Arimax和Var模型进行了需求预测,旨在为企业供应链管理提供科学依据,论文共23页并包含实现代码。
56 0
【2023年第十一届泰迪杯数据挖掘挑战赛】B题:产品订单的数据分析与需求预测 23页论文及实现代码
|
2月前
|
运维 DataWorks 安全
DataWorks产品使用合集之只读实例数据库是否可以进行数据分析
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
|
3月前
|
DataWorks 监控 数据挖掘
DataWorks产品使用合集之数据分析维表有什么用处
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
|
3月前
|
JavaScript Java 测试技术
基于springboot+vue.js+uniapp小程序的产品销售收入数据分析系统附带文章源码部署视频讲解等
基于springboot+vue.js+uniapp小程序的产品销售收入数据分析系统附带文章源码部署视频讲解等
22 0
|
5月前
|
人工智能 自然语言处理 数据挖掘
产品更新|宜搭AI 新增「智能数据分析」「智能表单」两项功能!
「宜搭AI」开放新一期功能:智能数据分析、智能表单,已支持在宜搭网页端使用体验。
452 0
产品更新|宜搭AI 新增「智能数据分析」「智能表单」两项功能!

热门文章

最新文章

下一篇
无影云桌面