如何构建下一代大数据架构——数据湖

简介:

如何创建一个适用于多样数据类型,并可扩展的敏捷数据平台?答案就在数据湖中!

图片源于网络

技术和软件的进步使我们能够处理和分析大量数据。虽然很明显,大数据是一个企业投入了大量资金的热门话题,但要注意,除了考虑数据规模,我们还需要考虑到被分析数据类型的多样性。数据种类不同意味着数据集可以存储在许多格式和存储系统中,每个类型都有自己的特征。

考虑数据多样性是一项艰巨的任务,但有一种方法可以使你360度全面了解你的客户,提供商和运营商。为了实现这种方法,我们需要实现下一代大数据架构。接下来,我们来看一下如何构建下一代大数据架构。

如今,较具前瞻性的企业都越来越依赖数据湖。数据湖是管理事务数据库,同时,数据湖也可以看做是一个大数据分析平台。数据湖支持不同来源的数据,如文件,点击流,IoT传感器数据,社交网络数据和SaaS应用程序数据。

数据湖的核心原则是存储原始的,未经改变的数据。这让数据分析和探索更具有灵活性,并且还允许查询和算法基于历史和当前数据,而不是基于单个时间点的快照来演变。数据湖可将数据集中到一个公共存储库中,以此避免信息孤岛。该存储库很可能分布在许多物理机上,但最终将为用户提供透明访问和基础分布式存储的统一视图。此外,数据不仅是分布式的而且是复制的,因此可以确保数据的易访问和可用性。

数据湖存储所有类型的数据,包括结构化和非结构化数据,并通过整个企业的统一视图提供民主化访问。通过这种方法,用户可以在单个平台支持许多不同的数据源和数据类型。 数据库加强了企业现有的IT基础架构,与传统应用程序集成,增强(甚至替换)企业数据仓库(EDW)环境,并可利用日益增长的数据种类和数据量为新应用程序提供支持。

能够存储不同类型的数据是数据湖的一个重要特征,这保证了用户不会丢弃任何有价值的元数据或原属性,不同的数据分析技术也可用于数据的各阶段,避免了仅在其被聚合或变换之后才处理数据而产生的限制。创建可以使用不同算法查询的统一存储库,包括传统EDW环境范围之外的SQL备选方案,是数据湖的标志和大数据战略的基本部分。

为了实现数据湖的最大价值,必须保证数据的质量和可靠性——即确保数据湖可以恰当地反映公司业务。可以轻松访问,让用户能够更快识别他们想要使用的数据。为了管理数据湖,关键是具有清理,保护和操作数据的流程。

构建数据湖不是一个简单的过程,必须决定采集哪些数据,以及如何组织和编目数据。 虽然它不是一个自动化的过程,但有相应的工具和产品来简化企业级现代数据湖架构的创建和管理。这些工具允许提取不同类型的数据包括流,结构化和非结构化,所有这些都为敏捷数据湖平台的创建打下了基础。


本文作者:zyy

来源:51CTO

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
相关文章
|
3月前
|
机器学习/深度学习 人工智能 搜索推荐
从零构建短视频推荐系统:双塔算法架构解析与代码实现
短视频推荐看似“读心”,实则依赖双塔推荐系统:用户塔与物品塔分别将行为与内容编码为向量,通过相似度匹配实现精准推送。本文解析其架构原理、技术实现与工程挑战,揭秘抖音等平台如何用AI抓住你的注意力。
931 7
从零构建短视频推荐系统:双塔算法架构解析与代码实现
|
3月前
|
人工智能 监控 测试技术
告别只会写提示词:构建生产级LLM系统的完整架构图​
本文系统梳理了从提示词到生产级LLM产品的八大核心能力:提示词工程、上下文工程、微调、RAG、智能体开发、部署、优化与可观测性,助你构建可落地、可迭代的AI产品体系。
612 51
|
3月前
|
存储 SQL 机器学习/深度学习
一文辨析:数据仓库、数据湖、湖仓一体
本文深入解析数据仓库、数据湖与湖仓一体的技术原理与适用场景。数据仓库结构严谨、查询高效,适合处理结构化数据;数据湖灵活开放,支持多模态数据,但治理难度高;湖仓一体融合两者优势,实现低成本存储与高效分析,适合大规模数据场景。文章结合企业实际需求,探讨如何选择合适的数据架构,并提供湖仓一体的落地迁移策略,助力企业提升数据价值。
一文辨析:数据仓库、数据湖、湖仓一体
|
3月前
|
消息中间件 缓存 监控
中间件架构设计与实践:构建高性能分布式系统的核心基石
摘要 本文系统探讨了中间件技术及其在分布式系统中的核心价值。作者首先定义了中间件作为连接系统组件的"神经网络",强调其在数据传输、系统稳定性和扩展性中的关键作用。随后详细分类了中间件体系,包括通信中间件(如RabbitMQ/Kafka)、数据中间件(如Redis/MyCAT)等类型。文章重点剖析了消息中间件的实现机制,通过Spring Boot代码示例展示了消息生产者的完整实现,涵盖消息ID生成、持久化、批量发送及重试机制等关键技术点。最后,作者指出中间件架构设计对系统性能的决定性影响,
|
3月前
|
SQL 弹性计算 关系型数据库
如何用读写分离构建高效稳定的数据库架构?
在少写多读业务场景中,主实例读请求压力大,影响性能。通过创建只读实例并使用数据库代理实现读写分离,可有效降低主实例负载,提升系统性能与可用性。本文详解配置步骤,助你构建高效稳定的数据库架构。
存储 数据采集 大数据
117 0
|
3月前
|
数据采集 运维 监控
构建企业级Selenium爬虫:基于隧道代理的IP管理架构
构建企业级Selenium爬虫:基于隧道代理的IP管理架构
|
3月前
|
传感器 人工智能 算法
分层架构解耦——如何构建不依赖硬件的具身智能系统
硬件与软件的彻底解耦,并通过模块化、分层的架构进行重构,是突破这一瓶颈、构建通用型具身智能系统的核心基石。这种架构将具身智能系统解耦为三个核心层级:HAL、感知决策层和任务执行层。这一模式使得企业能够利用预置的技能库和低代码工具快速配置新任务,在不更换昂贵硬件的前提下,实现从清洁机器人到物流机器人的快速功能切换。本文将通过对HAL技术原理、VLA大模型和行为树等核心技术的深度剖析,并结合Google RT-X、RobotecAI RAI和NVIDIA Isaac Sim等主流框架的案例,论证这一新范式的可行性与巨大潜力,探讨硬件解耦如何将机器人从一个“工具”升级为“软件定义”的“多面手”,从而
639 3
|
2月前
|
Cloud Native Serverless API
微服务架构实战指南:从单体应用到云原生的蜕变之路
🌟蒋星熠Jaxonic,代码为舟的星际旅人。深耕微服务架构,擅以DDD拆分服务、构建高可用通信与治理体系。分享从单体到云原生的实战经验,探索技术演进的无限可能。
微服务架构实战指南:从单体应用到云原生的蜕变之路
|
5月前
|
缓存 Cloud Native Java
Java 面试微服务架构与云原生技术实操内容及核心考点梳理 Java 面试
本内容涵盖Java面试核心技术实操,包括微服务架构(Spring Cloud Alibaba)、响应式编程(WebFlux)、容器化(Docker+K8s)、函数式编程、多级缓存、分库分表、链路追踪(Skywalking)等大厂高频考点,助你系统提升面试能力。
304 0