如何构建下一代大数据架构——数据湖

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

如何创建一个适用于多样数据类型,并可扩展的敏捷数据平台?答案就在数据湖中!

图片源于网络

技术和软件的进步使我们能够处理和分析大量数据。虽然很明显,大数据是一个企业投入了大量资金的热门话题,但要注意,除了考虑数据规模,我们还需要考虑到被分析数据类型的多样性。数据种类不同意味着数据集可以存储在许多格式和存储系统中,每个类型都有自己的特征。

考虑数据多样性是一项艰巨的任务,但有一种方法可以使你360度全面了解你的客户,提供商和运营商。为了实现这种方法,我们需要实现下一代大数据架构。接下来,我们来看一下如何构建下一代大数据架构。

如今,较具前瞻性的企业都越来越依赖数据湖。数据湖是管理事务数据库,同时,数据湖也可以看做是一个大数据分析平台。数据湖支持不同来源的数据,如文件,点击流,IoT传感器数据,社交网络数据和SaaS应用程序数据。

数据湖的核心原则是存储原始的,未经改变的数据。这让数据分析和探索更具有灵活性,并且还允许查询和算法基于历史和当前数据,而不是基于单个时间点的快照来演变。数据湖可将数据集中到一个公共存储库中,以此避免信息孤岛。该存储库很可能分布在许多物理机上,但最终将为用户提供透明访问和基础分布式存储的统一视图。此外,数据不仅是分布式的而且是复制的,因此可以确保数据的易访问和可用性。

数据湖存储所有类型的数据,包括结构化和非结构化数据,并通过整个企业的统一视图提供民主化访问。通过这种方法,用户可以在单个平台支持许多不同的数据源和数据类型。 数据库加强了企业现有的IT基础架构,与传统应用程序集成,增强(甚至替换)企业数据仓库(EDW)环境,并可利用日益增长的数据种类和数据量为新应用程序提供支持。

能够存储不同类型的数据是数据湖的一个重要特征,这保证了用户不会丢弃任何有价值的元数据或原属性,不同的数据分析技术也可用于数据的各阶段,避免了仅在其被聚合或变换之后才处理数据而产生的限制。创建可以使用不同算法查询的统一存储库,包括传统EDW环境范围之外的SQL备选方案,是数据湖的标志和大数据战略的基本部分。

为了实现数据湖的最大价值,必须保证数据的质量和可靠性——即确保数据湖可以恰当地反映公司业务。可以轻松访问,让用户能够更快识别他们想要使用的数据。为了管理数据湖,关键是具有清理,保护和操作数据的流程。

构建数据湖不是一个简单的过程,必须决定采集哪些数据,以及如何组织和编目数据。 虽然它不是一个自动化的过程,但有相应的工具和产品来简化企业级现代数据湖架构的创建和管理。这些工具允许提取不同类型的数据包括流,结构化和非结构化,所有这些都为敏捷数据湖平台的创建打下了基础。


本文作者:zyy

来源:51CTO

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
7天前
|
运维 Kubernetes Docker
利用Docker和Kubernetes构建微服务架构
利用Docker和Kubernetes构建微服务架构
|
13天前
|
运维 持续交付 API
从零构建微服务架构:一次深度技术探索之旅####
【10月更文挑战第28天】 本文记录了作者在从零开始构建微服务架构过程中的深刻技术感悟,通过实战案例详细剖析了微服务设计、开发、部署及运维中的关键要点与挑战。文章首先概述了微服务架构的核心理念及其对企业IT架构转型的重要性,随后深入探讨了服务拆分策略、API网关选型、服务间通信协议选择、容器化部署(Docker+Kubernetes)、以及持续集成/持续部署(CI/CD)流程的设计与优化。最后,分享了在高并发场景下的性能调优经验与故障排查心得,旨在为读者提供一套可借鉴的微服务架构实施路径。 ####
52 3
|
7天前
|
大数据
【赵渝强老师】大数据主从架构的单点故障
大数据体系架构中,核心组件采用主从架构,存在单点故障问题。为提高系统可用性,需实现高可用(HA)架构,通常借助ZooKeeper来实现。ZooKeeper提供配置维护、分布式同步等功能,确保集群稳定运行。下图展示了基于ZooKeeper的HDFS HA架构。
|
7天前
|
SQL 数据采集 分布式计算
【赵渝强老师】基于大数据组件的平台架构
本文介绍了大数据平台的总体架构及各层的功能。大数据平台架构分为五层:数据源层、数据采集层、大数据平台层、数据仓库层和应用层。其中,大数据平台层为核心,负责数据的存储和计算,支持离线和实时数据处理。数据仓库层则基于大数据平台构建数据模型,应用层则利用这些模型实现具体的应用场景。文中还提供了Lambda和Kappa架构的视频讲解。
【赵渝强老师】基于大数据组件的平台架构
|
3天前
|
传感器 算法 物联网
智能停车解决方案之停车场室内导航系统(二):核心技术与系统架构构建
随着城市化进程的加速,停车难问题日益凸显。本文深入剖析智能停车系统的关键技术,包括停车场电子地图编辑绘制、物联网与传感器技术、大数据与云计算的应用、定位技术及车辆导航路径规划,为读者提供全面的技术解决方案。系统架构分为应用层、业务层、数据层和运行环境,涵盖停车场室内导航、车位占用检测、动态更新、精准导航和路径规划等方面。
27 4
|
12天前
|
监控 前端开发 JavaScript
探索微前端架构:构建可扩展的现代Web应用
【10月更文挑战第29天】本文探讨了微前端架构的核心概念、优势及实施策略,通过将大型前端应用拆分为多个独立的微应用,提高开发效率、增强可维护性,并支持灵活的技术选型。实际案例包括Spotify和Zalando的成功应用。
|
15天前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
59 2
|
16天前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第26天】本文详细探讨了Hadoop与Spark在大数据处理中的协同作用,通过具体案例展示了两者的最佳实践。Hadoop的HDFS和MapReduce负责数据存储和预处理,确保高可靠性和容错性;Spark则凭借其高性能和丰富的API,进行深度分析和机器学习,实现高效的批处理和实时处理。
56 1
|
6月前
|
SQL 分布式计算 数据处理
Uber基于Apache Hudi增量 ETL 构建大规模数据湖
Uber基于Apache Hudi增量 ETL 构建大规模数据湖
139 2
|
6月前
|
存储 SQL 分布式计算
基于Apache Hudi + MinIO 构建流式数据湖
基于Apache Hudi + MinIO 构建流式数据湖
258 1