企业必须考虑的关于大数据架构的6大问题

简介:

在拉斯维加斯举行的Dell EMC World 2017大会上,戴尔EMC系统工程师Cory Minton解释了IT领导者如何更好地思考其大数据部署。

大数据在业务价值方面承诺了很多,但企业可能难以确定如何部署需要利用的架构和工具。

从描述性统计,到预测建模,到人工智能的一切都是由大数据提供支持。而组织希望通过大数据来实现这一目标,并将决定其需要推出的工具。

在5月8日召开的2017年戴尔EMC世界会议上,戴尔EMC数据分析的主要系统工程师Cory Minton发表了演示文稿,解释了组织在部署大数据时必须做出的最大决定。在做出决定开始之前,每个企业都要问这六个问题:

1.购买与构建?

要问的第一个问题是组织是否要购买大型数据系统或从头开始构建。Teradata,SAS,SAP和Splunk的热门产品可以买到并简单实现,而Hortonworks,Cloudera,Databricks,Apache Flink可用于构建大型数据系统。

Minton表示,购买提供更短的时间,以及商品使用的简单性和良好的价值。然而,这种简单性通常会带来更高的成本,而这些工具通常在低多样性数据方面效果最佳。如果组织与供应商存在现有的关系,则可以更容易地分析新产品并尝试使用大型数据工具。

许多用于构建大数据系统的流行工具价格低廉或可以免费使用,并且它们可以更容易地利用独特的价值流。其建设路径为大规模和多样化提供了机会,但这些工具可能非常复杂。互操作性往往是管理员面临的最大问题之一。

2.批量与流数据?

Minton说,由Oracle,Hadoop MapReduce和Apache Spark等产品提供的批量数据是描述性的,可以处理大量的数据。他们也可以安排,并经常被用来建立一个数据科学家进行实验的产品平台。

像Apache Kafka,Splunk和Flink这样的产品可以提供能够捕获的流数据功能,以创建潜在的预测模型。Minton表示,使用流式传输数据,其速度胜过数据保真度,但也提供了巨大的规模和多样性。这对于认同DevOps文化的组织更为有用。

3.Kappa vs. lambda架构?

Twitter是lambda架构的一个例子。其数据被分为两个路径,其中一个路径被馈送到速度层进行快速分析,而另一个路径导致批处理和服务层。Minton表示,这种模式使组织能够访问批量和流媒体的见解,并平衡有损流。他说,这里的挑战是人们必须管理两个代码和应用程序基础。

Kappa架构将所有内容都视为流,但它是一个旨在实时保持数据保真度和流程的实时处理。所有数据都将写入不可变日志,以检查更改。其硬件高效,代码较少,这是Minton推荐给开始实施大数据的组织的一种模式。

4.公共云vs私有云?

大数据的公共和私有云需要许多相同的考虑。对于初学者来说,一个组织必须考虑到最适合他们的人才工作的环境。另外,还应该考虑数据来源,安全性和合规性需求,以及弹性消费模型。

5.虚拟化与物理性?

几年前,虚拟化基础设备与物理基础设施的争论更加激烈,Minton说。然而,虚拟化已经发展到可与物理硬件进行竞争,在大数据部署方面也变得类似。它归结为组织的管理员更舒适,适用于其现有的基础设施。

6.DAS vs. NAS?

Minton说,直接连接存储(DAS)以前是部署Hadoop集群的唯一方式。然而,现在IP网络增加了带宽,网络连接存储(NAS)选项对于大数据更为可行。

使用DAS很容易上手,而且该模型与软件定义的概念一致。它是为了处理性能和存储方面的线性增长而开发的,并且它与流式传输数据相当。

网络连接存储(NAS)可以很好地处理多协议需求,提供大规模的效率,并且还可以满足安全性和合规性需求。


本文作者:Conner Forrest

来源:51CTO

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
相关文章
|
4月前
|
机器学习/深度学习 人工智能 监控
大型动作模型LAM:让企业重复任务实现80%效率提升的AI技术架构与实现方案
大型动作模型(LAMs)作为人工智能新架构,融合神经网络与符号逻辑,实现企业重复任务的自动化处理。通过神经符号集成、动作执行管道、模式学习、任务分解等核心技术,系统可高效解析用户意图并执行复杂操作,显著提升企业运营效率并降低人工成本。其自适应学习能力与上下文感知机制,使自动化流程更智能、灵活,为企业数字化转型提供坚实支撑。
364 0
大型动作模型LAM:让企业重复任务实现80%效率提升的AI技术架构与实现方案
|
4月前
|
人工智能 数据可视化 算法
企业想做数智化,数据仓库架构你得先搞懂!
在数智化浪潮下,数据驱动已成为企业竞争力的核心。然而,许多企业在转型过程中忽视了数据仓库这一关键基础。本文深入解析数据仓库的重要性,厘清其与数据库的区别,详解ODS、DWD、DWS、ADS分层逻辑,并提供从0到1搭建数据仓库的五步实战方法,助力企业夯实数智化底座,实现数据治理与业务协同的真正落地。
企业想做数智化,数据仓库架构你得先搞懂!
|
5月前
|
存储 SQL 监控
数据中台架构解析:湖仓一体的实战设计
在数据量激增的数字化时代,企业面临数据分散、使用效率低等问题。数据中台作为统一管理与应用数据的核心平台,结合湖仓一体架构,打通数据壁垒,实现高效流转与分析。本文详解湖仓一体的设计与落地实践,助力企业构建统一、灵活的数据底座,驱动业务决策与创新。
|
2月前
|
运维 Prometheus 监控
别再“亡羊补牢”了!——聊聊如何优化企业的IT运维监控架构
别再“亡羊补牢”了!——聊聊如何优化企业的IT运维监控架构
153 8
|
6月前
|
存储 SQL 分布式计算
19章构建企业级大数据平台:从架构设计到数据治理的完整链路
开源社区: 贡献者路径:从提交Issue到成为Committer 会议演讲:通过DataWorks Summit提升影响力 标准制定: 白皮书撰写:通过DAMA数据治理框架认证 专利布局:通过架构设计专利构建技术壁垒
|
3月前
|
存储 分布式计算 资源调度
【赵渝强老师】阿里云大数据MaxCompute的体系架构
阿里云MaxCompute是快速、全托管的EB级数据仓库解决方案,适用于离线计算场景。它由计算与存储层、逻辑层、接入层和客户端四部分组成,支持多种计算任务的统一调度与管理。
364 1
|
5月前
|
消息中间件 分布式计算 大数据
“一上来就搞大数据架构?等等,你真想清楚了吗?”
“一上来就搞大数据架构?等等,你真想清楚了吗?”
116 1
|
4月前
|
SQL 存储 监控
流处理 or 批处理?大数据架构还需要流批一体吗?
简介:流处理与批处理曾是实时监控与深度分析的两大支柱,但二者在数据、代码与资源上的割裂,导致维护成本高、效率低。随着业务对数据实时性与深度分析的双重需求提升,传统架构难以为继,流批一体应运而生。它旨在通过逻辑、存储与资源的统一,实现一套系统、一套代码同时支持实时与离线处理,提升效率与一致性,成为未来大数据架构的发展方向。
|
4月前
|
存储 供应链 数据可视化
Java 大视界 -- 基于 Java 的大数据可视化在企业供应链风险预警与决策支持中的应用(204)
本篇文章探讨了基于 Java 的大数据可视化技术在企业供应链风险预警与决策支持中的深度应用。文章系统介绍了从数据采集、存储、处理到可视化呈现的完整技术方案,结合供应链风险预警与决策支持的实际案例,展示了 Java 大数据技术如何助力企业实现高效、智能的供应链管理。
|
5月前
|
人工智能 自然语言处理 供应链
AI时代企业难以明确大模型价值,AI产品经理如何绘制一张‘看得懂、讲得通、落得下’的AI产品架构图解决这一问题?
本文产品专家系统阐述了AI产品经理如何绘制高效实用的AI产品架构图。从明确企业六大职能切入,通过三层架构设计实现技术到业务的精准转译。重点解析了各职能模块的AI应用场景、通用场景及核心底层能力,并强调建立"需求-反馈"闭环机制。AI产品专家三桥君为AI产品经理提供了将大模型能力转化为商业价值的系统方法论,助力企业实现AI技术的业务落地与价值最大化。
306 0