适用场景全新升级!扩展 Dragonfly2 作为分布式缓存系统架构 | 龙蜥技术

简介: 对于不存在的一个远端源地址,Dragonfly无法分发数据应该怎么办?

640.png

文/龙蜥社区开发者

Dragonfly2 简介

Dragonfly 作为龙蜥社区的镜像加速标准解决方案,是一款基于 P2P 的智能镜像和文件分发工具。它旨在提高大规模文件传输的效率和速率,最大限度地利用网络带宽。在应用分发、缓存分发、日志分发和镜像分发等领域被大规模使用。


现阶段 Dragonfly 基于 Dragonfly1.x 演进而来,在保持 Dragonfly1.x 原有核心能力的基础上,Dragonfly 在系统架构设计、产品能力、使用场景等几大方向上进行了全面升级。


Dragonfly 架构主要分为三部分 Manager、Scheduler、Seed Peer 以及 Peer 各司其职组成 P2P 下载网络,Dfdaemon 可以作为 Seed Peer 和 Peer。详细内容可以参考架构文档(链接见文末),下面是各模块功能:

  • Manager:维护各 P2P 集群的关联关系、动态配置管理、用户态以及权限管理等功能。也包含了前端控制台,方便用户进行可视化操作集群。
  • Scheduler:为下载节点选择最优下载父节点。异常情况控制 Dfdaemon 回源。
  • Seed Peer:Dfdaemon 开启 Seed Peer 模式可以作为 P2P 集群中回源下载节点, 也就是整个集群中下载的根节点。
  • Peer:通过 Dfdaemon 部署,基于 C/S 架构提供 dfget 命令行下载工具,以及 dfget daemon 运行守护进程,提供任务下载能力。

 

640 (49).png

更多详细信息可以参考 Dragonfly 官网(链接见文末)

问题背景

虽然 Dragonfly 的定位是一个基于 P2P 的文件分发系统,但是分发的文件必须是能够从网络上下载的文件,无论是 rpm 包还是容器镜像内容,最终都是有一个地址源的,用户可以通过 dfget 命令向 dfdaemon 发起下载请求,然后 Dragonfly P2P 系统负责下载,如果数据不在其他 Peer 上,那么 Peer 或者 SeedPeer 自己会回源,直接从源下载数据,然后返回给用户。


但是有些场景我们需要分发的数据是某个节点上生成的,不存在一个远端的源地址,这个时候 Dragonfly 就无法分发这种数据了。所以我们希望 Dragonfly 能够增加对这种场景的支持,其实相当于把 Dragonfly 当作了一个分布式的基于 P2P 的缓存和任意数据分发系统。

扩展 Dragonfly2

所以我们设想中的 Dragonfly 缓存系统架构是这样的:

640 (50).png

  • 每个计算节点上(比如神龙)部署一个 dfdaemon,作为一个 peer 加入 P2P 网络。
  • 接受来自本节点的请求
  • 为其他 peer 提供上传服务
  • 每个 peer 只负责管理自己本地的 cache 数据,不负责回源,回源由业务进程负责
  • 每个集群可以部署一个到多个基于 ECS 的 scheduler 节点。
  • 记录文件 P2P 网络的文件信息
  • 下载调度
  • 多 scheduler 节点解决单点故障问题
  • 每个 cache 系统中的文件都会通过 ringhash 映射到某个 scheduler 上
  • 一个或者多个 Manager 作为集群管理者。
  • 负责向 scheduler 和 peer 节点发送动态配置
  • 收集 metrics 等信息


接口设计

dfdaemon 接口

原来的 daemon 接口:

pkg/rpc/dfdaemon/dfdaemon.proto
// Daemon Client RPC Service
service Daemon{
  // Trigger client to download file
  rpc Download(DownRequest) returns(stream DownResult);
  // Get piece tasks from other peers
  rpc GetPieceTasks(base.PieceTaskRequest)returns(base.PiecePacket);
  // Check daemon health
  rpc CheckHealth(google.protobuf.Empty)returns(google.protobuf.Empty);
}

新增  4 个接口:

service Daemon { 
// Check if given task exists in P2P cache system
rpc StatTask(StatTaskRequest) returns(google.protobuf.Empty);
// Import the given file into P2P cache system
rpc ImportTask(ImportTaskRequest) returns(google.protobuf.Empty);
// Export or download file from P2P cache system
rpc ExportTask(ExportTaskRequest) returns(google.protobuf.Empty);
// Delete file from P2P cache system
rpc DeleteTask(DeleteTaskRequest) returns(google.protobuf.Empty);
}

scheduler 接口

原来的 scheduler 接口:

// Scheduler System RPC Service
service Scheduler{
// RegisterPeerTask registers a peer into one task.
rpc RegisterPeerTask(PeerTaskRequest)returns(RegisterResult);
// ReportPieceResult reports piece results and receives peer packets.
// when migrating to another scheduler,
// it will send the last piece result to the new scheduler.
rpc ReportPieceResult(stream PieceResult)returns(stream PeerPacket);
// ReportPeerResult reports downloading result for the peer task.
rpc ReportPeerResult(PeerResult)returns(google.protobuf.Empty);
// LeaveTask makes the peer leaving from scheduling overlay for the task.
rpc LeaveTask(PeerTarget)returns(google.protobuf.Empty);
}

 

新增 2 个接口,下载复用之前的 RegisterPeerTask()接口,删除复用之前的LeaveTask() 接口:

// Scheduler System RPC Service
service Scheduler{
// Checks if any peer has the given task
rpc StatTask(StatTaskRequest)returns(Task);
// A peer announces that it has the announced task to other peers
rpc AnnounceTask(AnnounceTaskRequest) returns(google.protobuf.Empty);
}

接口请求时序图

StatTask

640 (51).png

ImportTask

640 (52).png

ExportTask

640 (53).png

DeleteTask

640 (54).png

代码实现

目前代码已经合并,可以在 Dragonfly v2.0.3 版本中使用。

upstream PR:

https://github.com/dragonflyoss/Dragonfly2/pull/1227


使用方法

除了增加新的接口之外,我们还增加了一个叫 dfcache 的命令,用于测试,使用方法如下:

- add a file into cache system
dfcache import --cid sha256:xxxxxx --tag testtag /path/to/file
- check if a file exists in cache system
dfcache stat --cid testid --local # only check local cache
dfcache stat --cid testid # check other peers as well
- export/download a file from cache system
dfcache export --cid testid -O /path/to/output
- delete a file from cache system, both local cache and P2P network
dfcache delete -i testid -t testtag

测试及效果

测试方法

通过新增的 dfcache 命令,在一个节点上向 P2P cache 系统中添加不同大小的文件,然后在另外一个节点上针对这个文件做查询、下载、删除等操作。例如:

# dd if=/dev/urandom of=testfile bs=1M count =1024
# dfcache stat -i testid # 检查一个不存在的文件
# dfcache import -i testid testfile
# on another node
# dfcache stat -i testid
# dfcache export -i testid testfile.export

测试效果

两台 ecs,网络走 vpc,带宽 3.45 Gbits/s (约 440MiB/s):

640 (55).png

下载的 ecs 磁盘带宽 180MiB/s 左右:

640 (56).png

640 (57).png

相关阅读链接:

1、Dragonfly1.x 链接地址:

https://github.com/dragonflyoss/Dragonfly

2、Dragonfly 架构文档:

https://d7y.io/zh/docs/concepts/terminology/architecture/

3、Dragonfly 官网链接:

https://d7y.io/

4、龙蜥云原生SIG地址链接:

https://openanolis.cn/sig/cloud-native

—— 完 ——


加入龙蜥社群


加入微信群:添加社区助理-龙蜥社区小龙(微信:openanolis_assis),备注【龙蜥】与你同在;加入钉钉群:扫描下方钉钉群二维码。

640 (5).png

相关文章
|
4月前
|
存储 调度 C++
16 倍性能提升,成本降低 98%! 解读 SLS 向量索引架构升级改造
大规模数据如何进行语义检索? 当前 SLS 已经支持一站式的语义检索功能,能够用于 RAG、Memory、语义聚类、多模态数据等各种场景的应用。本文分享了 SLS 在语义检索功能上,对模型推理和部署、构建流水线等流程的优化,最终带给用户更高性能和更低成本的针对大规模数据的语义索引功能。
439 40
|
6月前
|
监控 Java API
Spring Boot 3.2 结合 Spring Cloud 微服务架构实操指南 现代分布式应用系统构建实战教程
Spring Boot 3.2 + Spring Cloud 2023.0 微服务架构实践摘要 本文基于Spring Boot 3.2.5和Spring Cloud 2023.0.1最新稳定版本,演示现代微服务架构的构建过程。主要内容包括: 技术栈选择:采用Spring Cloud Netflix Eureka 4.1.0作为服务注册中心,Resilience4j 2.1.0替代Hystrix实现熔断机制,配合OpenFeign和Gateway等组件。 核心实操步骤: 搭建Eureka注册中心服务 构建商品
1053 3
|
4月前
|
存储 SQL 消息中间件
从 ClickHouse 到 StarRocks 存算分离: 携程 UBT 架构升级实践
查询性能实现从秒级到毫秒级的跨越式提升
|
8月前
|
存储 运维 Java
官宣 | Fluss 0.7 发布公告:稳定性与架构升级
Fluss 0.7 版本正式发布!历经 3 个月开发,完成 250+ 次代码提交,聚焦稳定性、架构升级、性能优化与安全性。新增湖流一体弹性无状态服务、流式分区裁剪功能,大幅提升系统可靠性和查询效率。同时推出 Fluss Java Client 和 DataStream Connector,支持企业级安全认证与鉴权机制。未来将在 Apache 孵化器中继续迭代,探索多模态数据场景,欢迎开发者加入共建!
805 8
官宣 | Fluss 0.7 发布公告:稳定性与架构升级
|
7月前
|
人工智能 安全 Cloud Native
Nacos 3.0 架构升级,AI 时代更安全的 Registry
随着Nacos3.0的发布,定位由“更易于构建云原生应用的动态服务发现、配置管理和服务管理平台”升级至“ 一个易于构建 AI Agent 应用的动态服务发现、配置管理和AI智能体管理平台 ”。
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
34_GPT系列:从1到5的架构升级_深度解析
大型语言模型(LLM)的发展历程中,OpenAI的GPT系列无疑扮演着至关重要的角色。自2018年GPT-1问世以来,每一代GPT模型都在架构设计、预训练策略和性能表现上实现了质的飞跃。本专题将深入剖析GPT系列从1.17亿参数到能够处理百万级token上下文的技术演进,特别关注2025年8月8日发布的GPT-5如何引领大模型技术迈向通用人工智能(AGI)的重要一步。
|
4月前
|
缓存 运维 监控
Redis 7.0 高性能缓存架构设计与优化
🌟蒋星熠Jaxonic,技术宇宙中的星际旅人。深耕Redis 7.0高性能缓存架构,探索函数化编程、多层缓存、集群优化与分片消息系统,用代码在二进制星河中谱写极客诗篇。