Linux内核中的list.h浅谈

简介:

[十月往昔]——Linux内核中的list.h浅谈

为什么要叫做“十月往昔”呢,是为了纪念我的原博客。

不知道为什么,突然想来一个新的开始——而那个博客存活至今刚好十个月,也有十个月里的文档。

十月往昔,总有一些觉得珍贵的,所以搬迁到这里来。

而这篇文章是在09.04.10里写的。

Jason Lee

 

————————————–cut-line

/*-------------------------------

include/linux/list.h -2.6.29

*/

该文件包含:

1#ifndef _LINUX_LIST_H 2#define _LINUX_LIST_H 3 4#include <linux/stddef.h> 5#include <linux/poison.h> 6#include <linux/prefetch.h> 7#include <asm/system.h>

 

 

链表的初始化

19struct list_head { 20 struct list_head *next, *prev; 21}; 22 23#define LIST_HEAD_INIT(name) { &(name), &(name) } 24 25#define LIST_HEAD(name) / 26 struct list_head name = LIST_HEAD_INIT(name) 27 28static inline void INIT_LIST_HEAD(struct list_head *list) 29{ 30 list->next = list; 31 list->prev = list; 32}

19-21 行定义了一个list_head 结构,只有两个指向list_head 结构的指针,一个next ,一个prev ,作用显而易见。

23 行的宏LIST_HEAD_INIT(name)25 行的宏LIST_HEAD(name) 组合进行链表的初始化,即nextprev 都指向自身。

25 行的静态内联函数INIT_LIST_HEAD(struct list_head *list) 同样是用来初始化链表,效果同上述一点。GNU 下的C 语言对C 进行了扩充,不再是ANSI C ,它里面增添了很多C++ 的特性,所以对内核进行编译只能选用相应的GCC

INIT_LIST_HEAD 在有的文献中是以宏的形式出现:

#define INIT_LIST_HEAD(ptr) do { / (ptr)->next = (ptr); (ptr)->prev = (ptr); / } while (0)

 

 

链表的插入

34/* 35 * Insert a new entry between two known consecutive entries. 36 * 37 * This is only for internal list manipulation where we know 38 * the prev/next entries already! 39 */ 40#ifndef CONFIG_DEBUG_LIST 41static inline void __list_add(struct list_head *new, 42 struct list_head *prev, 43 struct list_head *next) 44{ 45 next->prev = new; 46 new->next = next; 47 new->prev = prev; 48 prev->next = new; 49} 50#else 51extern void __list_add(struct list_head *new, 52 struct list_head *prev, 53 struct list_head *next); 54#endif

这段程序在两个已知的节点中间插入一个新节点。这里选择的是条件编译,如果没有对CONFIG_DEBUG_LIST 进行宏定义,则定义了__list_add 这个静态内联函数,便于以下两个函数使用。

56/** 57 * list_add - add a new entry 58 * @new: new entry to be added 59 * @head: list head to add it after 60 * 61 * Insert a new entry after the specified head. 62 * This is good for implementing stacks. 63 */ 64static inline void list_add(struct list_head *new, struct list_head *head) 65{ 66 __list_add(new, head, head->next); 67}

该函数在指定的head 节点后面插入一个新节点new

70/** 71 * list_add_tail - add a new entry 72 * @new: new entry to be added 73 * @head: list head to add it before 74 * 75 * Insert a new entry before the specified head. 76 * This is useful for implementing queues. 77 */ 78static inline void list_add_tail(struct list_head *new, struct list_head *head) 79{ 80 __list_add(new, head->prev, head); 81}

该函数将一个节点new 插在指定的节点head 之前。

 

链表的删除

83/* 84 * Delete a list entry by making the prev/next entries 85 * point to each other. 86 * 87 * This is only for internal list manipulation where we know 88 * the prev/next entries already! 89 */ 90static inline void __list_del(struct list_head * prev, struct list_head * next) 91{ 92 next->prev = prev; 93 prev->next = next; 94}

该函数通过设置prevnext 指针指向彼此,实现了删除二者之间节点的功能。但是这里我有个疑惑,删除的指针的释放在哪里实现。

96/** 97 * list_del - deletes entry from list. 98 * @entry: the element to delete from the list. 99 * Note: list_empty() on entry does not return true after this, the entry is 100 * in an undefined state. 101 */ 102#ifndef CONFIG_DEBUG_LIST 103static inline void list_del(struct list_head *entry) 104{ 105 __list_del(entry->prev, entry->next); 106 entry->next = LIST_POISON1; 107 entry->prev = LIST_POISON2; 108} 109#else 110extern void list_del(struct list_head *entry); 111#endif

该函数通过调用上面的内联函数实现节点的删除,这里的LIST_POISON1 LIST_POISON2 是在linux / poison . h 定义的。此处仍然是条件编译。

 

 

链表节点的置换

113/** 114 * list_replace - replace old entry by new one 115 * @old : the element to be replaced 116 * @new : the new element to insert 117 * 118 * If @old was empty, it will be overwritten. 119 */ 120static inline void list_replace(struct list_head *old, 121 struct list_head *new) 122{ 123 new->next = old->next; 124 new->next->prev = new; 125 new->prev = old->prev; 126 new->prev->next = new; 127} 128 129static inline void list_replace_init(struct list_head *old, 130 struct list_head *new) 131{ 132 list_replace(old, new); 133 INIT_LIST_HEAD(old); 134}

静态内联函数list_replace 接受两个参数:oldnew ,并通过new 替换old 。而list_replace_init 函数则是通过调用list_replace 进行替换,之后调用INIT_LIST_HEAD 对被替换的old 进行链表初始化。

 

 

链表的移动

146/** 147 * list_move - delete from one list and add as another’s head 148 * @list: the entry to move 149 * @head: the head that will precede our entry 150 */ 151static inline void list_move(struct list_head *list, struct list_head *head) 152{ 153 __list_del(list->prev, list->next); 154 list_add(list, head); 155}

List_move 函数接受两个参数,第一个参数list 为想要移动的节点指针,第二个参数为目的地节点指针。该函数通过调用__list_del 函数实现list 节点的prevnext 两个指针互指实现删除list 节点的效果,并且调用list_addlist 节点插入到head 之后。

157/** 158 * list_move_tail - delete from one list and add as another’s tail 159 * @list: the entry to move 160 * @head: the head that will follow our entry 161 */ 162static inline void list_move_tail(struct list_head *list, 163 struct list_head *head) 164{ 165 __list_del(list->prev, list->next); 166 list_add_tail(list, head); 167}

List_move_tail 函数将指定节点移到指定链表的尾部,成为尾节点。并且由于链表是循环的,所以移动的节点指向该链表head 节点。具体实现是通过目标节点的prevnext 互指实现从原始链表中删除list 节点,之后通过调用list_add_taillist 节点插入到以head 为表首的链表尾部。

 

判断节点是否为链表的最后一个

169/** 170 * list_is_last - tests whether @list is the last entry in list @head 171 * @list: the entry to test 172 * @head: the head of the list 173 */ 174static inline int list_is_last(const struct list_head *list, 175 const struct list_head *head) 176{ 177 return list->next == head; 178}

通过判断节点的next 指向是否为表首来确定是否为last

 

 

判断链表是否为空

180/** 181 * list_empty - tests whether a list is empty 182 * @head: the list to test. 183 */ 184static inline int list_empty(const struct list_head *head) 185{ 186 return head->next == head; 187}

通过判断head 节点是否指向自身来判断链表是否为空。

189/** 190 * list_empty_careful - tests whether a list is empty and not being modified 191 * @head: the list to test 192 * 193 * Description: 194 * tests whether a list is empty _and_ checks that no other CPU might be 195 * in the process of modifying either member (next or prev) 196 * 197 * NOTE: using list_empty_careful() without synchronization 198 * can only be safe if the only activity that can happen 199 * to the list entry is list_del_init(). Eg. it cannot be used 200 * if another CPU could re-list_add() it. 201 */ 202static inline int list_empty_careful(const struct list_head *head) 203{ 204 struct list_head *next = head->next; 205 return (next == head) && (next == head->prev); 206}

此处函数的作用并不十分理解,对于绿色注释说明部分的DescriptionNOTE 部分也是一知半解。单纯地翻一下NOTE 部分:如果没有经过同步化处理,那么如果要达到安全地使用list_empty_careful 这个函数必须限定当前能对指定节点发生的操作仅仅为list_del_init() ,比如当一个CPU 对它进行add 操作的时候不能使用该函数。

该函数能达到的效果是检查链表是否为空,并且检测是否有CPU 在修改当前指定节点的prevnext 指针。

这里引用一段解释,来自杨沙洲:

Linux 链表另行提供了一个 list_empty_careful() 宏,它同时判断头指针的 next prev ,仅当两者都指向自己时才返回真。这主要是为了应付另一个 cpu 正在处理同一个链表而造成 next prev 不一致的情况。但代码注释也承认,这一安全保障能力有限:除非其他 cpu 的链表操作只有 list_del_init() ,否则仍然不能保证安全,也就是说,还是需要加锁保护。

 

 

判断链表是否只有唯一的一个节点

208/** 209 * list_is_singular - tests whether a list has just one entry. 210 * @head: the list to test. 211 */ 212static inline int list_is_singular(const struct list_head *head) 213{ 214 return !list_empty(head) && (head->next == head->prev); 215}

空表并不是一个节点都没有,唯一的节点也不是指只有一个节点,具体看函数代码我们便可以了解。当一个节点指针被执行LIST_HEAD 了以后,它的prevnext 指针都指向自身,这便称为空表;而如果它的prevnext 指针都指向仅有的第二个节点,那么它便称为仅有一个节点。

 

 

链表的切割

217static inline void __list_cut_position(struct list_head *list, 218 struct list_head *head, struct list_head *entry) 219{ 220 struct list_head *new_first = entry->next; 221 list->next = head->next; 222 list->next->prev = list; 223 list->prev = entry; 224 entry->next = list; 225 head->next = new_first; 226 new_first->prev = head; 227} 228 229/** 230 * list_cut_position - cut a list into two 231 * @list: a new list to add all removed entries 232 * @head: a list with entries 233 * @entry: an entry within head, could be the head itself 234 * and if so we won’t cut the list 235 * 236 * This helper moves the initial part of @head, up to and 237 * including @entry, from @head to @list. You should 238 * pass on @entry an element you know is on @head. @list 239 * should be an empty list or a list you do not care about 240 * losing its data. 241 * 242 */ 243static inline void list_cut_position(struct list_head *list, 244 struct list_head *head, struct list_head *entry) 245{ 246 if (list_empty(head)) 247 return; 248 if (list_is_singular(head) && 249 (head->next != entry && head != entry)) 250 return; 251 if (entry == head) 252 INIT_LIST_HEAD(list); 253 else 254 __list_cut_position(list, head, entry); 255}

这里有三个参数,list,head,entry

假设原先有链表:head <-> node1 <-> node2 <-> node3 <-> entry <-> node4 <-> head

那么最后会得到链表1head <-> node4 <-> head 和链表2list <-> node1 <-> node2 <-> node3 <-> entry <-> list

这里最好自己画图模拟一下。

 

链表的合并

257static inline void __list_splice(const struct list_head *list, 258 struct list_head *prev, 259 struct list_head *next) 260{ 261 struct list_head *first = list->next; 262 struct list_head *last = list->prev; 263 264 first->prev = prev; 265 prev->next = first; 266 267 last->next = next; 268 next->prev = last; 269}

假设有两条链表:head <-> node1 <-> node2 <-> node3 <-> head

和:last <-> list <-> first

那么合并的结果是取代了headlast <-> list <-> first <-> node1 <-> node2 <-> node3 <-> last

271/** 272 * list_splice - join two lists, this is designed for stacks 273 * @list: the new list to add. 274 * @head: the place to add it in the first list. 275 */ 276static inline void list_splice(const struct list_head *list, 277 struct list_head *head) 278{ 279 if (!list_empty(list)) 280 __list_splice(list, head, head->next); 281} 282 283/** 284 * list_splice_tail - join two lists, each list being a queue 285 * @list: the new list to add. 286 * @head: the place to add it in the first list. 287 */ 288static inline void list_splice_tail(struct list_head *list, 289 struct list_head *head) 290{ 291 if (!list_empty(list)) 292 __list_splice(list, head->prev, head); 293} 294 295/** 296 * list_splice_init - join two lists and reinitialise the emptied list. 297 * @list: the new list to add. 298 * @head: the place to add it in the first list. 299 * 300 * The list at @list is reinitialised 301 */ 302static inline void list_splice_init(struct list_head *list, 303 struct list_head *head) 304{ 305 if (!list_empty(list)) { 306 __list_splice(list, head, head->next); 307 INIT_LIST_HEAD(list); 308 } 309} 310 311/** 312 * list_splice_tail_init - join two lists and reinitialise the emptied list 313 * @list: the new list to add. 314 * @head: the place to add it in the first list. 315 * 316 * Each of the lists is a queue. 317 * The list at @list is reinitialised 318 */ 319static inline void list_splice_tail_init(struct list_head *list, 320 struct list_head *head) 321{ 322 if (!list_empty(list)) { 323 __list_splice(list, head->prev, head); 324 INIT_LIST_HEAD(list); 325 } 326}

以下的合并函数都是调用第一个合并内联函数__list_splice ,区别只在于合并取代的位置以及是否对空出来的head 进行初始化,即调用INIT_LIST_HEAD 等宏。

目录
相关文章
|
23天前
|
存储 安全 Linux
探索Linux操作系统的心脏:内核
在这篇文章中,我们将深入探讨Linux操作系统的核心—内核。通过简单易懂的语言和比喻,我们会发现内核是如何像心脏一样为系统提供动力,处理数据,并保持一切顺畅运行。从文件系统的管理到进程调度,再到设备驱动,我们将一探究竟,看看内核是怎样支撑起整个操作系统的大厦。无论你是计算机新手还是资深用户,这篇文章都将带你领略Linux内核的魅力,让你对这台复杂机器的内部运作有一个清晰的认识。
54 3
|
1月前
|
缓存 安全 Unix
Linux 内核黑客不可靠指南【ChatGPT】
Linux 内核黑客不可靠指南【ChatGPT】
|
1月前
|
Linux 开发者
Linux内核贡献成熟度模型 【ChatGPT】
Linux内核贡献成熟度模型 【ChatGPT】
|
1月前
|
网络协议 Ubuntu Linux
用Qemu模拟vexpress-a9 (三)--- 实现用u-boot引导Linux内核
用Qemu模拟vexpress-a9 (三)--- 实现用u-boot引导Linux内核
|
1月前
|
Linux
用clang编译Linux内核
用clang编译Linux内核
|
1月前
|
Linux API C语言
Linux 内核补丁提交的清单 【ChatGPT】
Linux 内核补丁提交的清单 【ChatGPT】
|
1月前
|
安全 Linux 开发者
Linux内核管理风格 【ChatGPT】
Linux内核管理风格 【ChatGPT】
|
1月前
|
Linux 程序员 编译器
Linux内核驱动程序接口 【ChatGPT】
Linux内核驱动程序接口 【ChatGPT】
|
1月前
|
存储 Linux 开发工具
如何进行Linux内核开发【ChatGPT】
如何进行Linux内核开发【ChatGPT】
|
1月前
|
Linux API 调度
关于在Linux内核中使用不同延迟/休眠机制 【ChatGPT】
关于在Linux内核中使用不同延迟/休眠机制 【ChatGPT】
下一篇
无影云桌面