人工智能之神经网络特训班课程过半,这些内容关键点你不能错过

简介:

2016 年,谷歌 AlphaGo 下围棋战胜了人类世界冠军李世石;美国白宫发布了人工智能白皮书;微软研发的 AI 语音识别首次超过了人类...人工智能一跃成为产业发展的主要方向、科技进步的关键源动力。

相信很多人都注意到了这一趋势,但现实是:仍有许多朋友对 AI 一知半解,如雾里看花。究其原因,或许可以归结为以下几点:找不到系统的学习资料,缺少经验丰富的“引路人”,以及没有一个合适的学习、交流平台。

为此,雷锋网(公众号:雷锋网)联合国内顶级 AI 培训平台“1024MOOC学院”,邀请到清华大学计算机系的博士生导师邓志东教授作为授课嘉宾,举办“人工智能之神经网络特训班”。邓教授从事包括深度神经网络在内的人工神经网络研究 25 年,在清华授课 20 余年,研究无人驾驶技术 8 年,具有非常丰富的研发和教学经验。

上周末(3 月 4 日、5 日),第一期课程“人工智能之神经网络特训班”结束了前两个章节的学习,并将于本周末进入最后两个章节。下面,我们将简单汇总上周课程的讲授重点,以帮助那些错过上周末直播的朋友更好地理解后续内容。

上周讲授的主要内容包括以下两个方面:1. 人工智能与生物神经系统;2. 人工神经网络基础。

  人工智能与生物神经系统

这一部分邓教授综述了 AI 的定义及发展历程、关键技术成果、高性能计算平台以及典型应用场景和前沿探索等内容。课程中,邓教授在阐述 AI 发展历史的同时,会不时插入一些经典的用例和关键技术特征,而且,在讲述技术特征时,又会常常联系起此前出现过的其他技术特征,对比其区别和联系。总体上,让学员在 AI 发展历程和关键技术特点之间建立了一个相互联系的牢固架构,非常便于理解和记忆。相关精彩 PPT 如下:

人工智能之神经网络特训班课程过半,这些内容关键点你不能错过

人工智能名称的由来

人工智能之神经网络特训班课程过半,这些内容关键点你不能错过

三个人工智能学习方法

人工智能之神经网络特训班课程过半,这些内容关键点你不能错过

深度神经网络的主要分类

人工智能之神经网络特训班课程过半,这些内容关键点你不能错过

人工智能之神经网络特训班课程过半,这些内容关键点你不能错过

一些关键进展

人工智能之神经网络特训班课程过半,这些内容关键点你不能错过

人工智能离不开大数据的支持

人工智能之神经网络特训班课程过半,这些内容关键点你不能错过

离不开超强硬件计算能力的支持

人工智能之神经网络特训班课程过半,这些内容关键点你不能错过

新体制的硬件平台

人工智能之神经网络特训班课程过半,这些内容关键点你不能错过

未来的一些方向

人工智能之神经网络特训班课程过半,这些内容关键点你不能错过

生物神经系统原理

  人工神经网络基础

第二部分,邓教授讲述了人工神经元的基本模型,以及 BP 网络、Hopfield 网络这两种关键模型。在讲解后面两种景点神经网络模型时,邓教授对基于 BP 和 Hopfield 网络的每一个优化和细分结构都进行了公式推理级的详细讲解,让学员不但清楚了这些结构的优势,并且理解了为什么具有这些优势。相关精彩 PPT 如下:

人工智能之神经网络特训班课程过半,这些内容关键点你不能错过

标准人工神经元模型——MP模型

人工智能之神经网络特训班课程过半,这些内容关键点你不能错过

人工神经网络的关键就是网络结构+学习算法

人工智能之神经网络特训班课程过半,这些内容关键点你不能错过人工智能之神经网络特训班课程过半,这些内容关键点你不能错过

三种典型网络结构

人工智能之神经网络特训班课程过半,这些内容关键点你不能错过

人工智能之神经网络特训班课程过半,这些内容关键点你不能错过

人工智能之神经网络特训班课程过半,这些内容关键点你不能错过

BP网络的相关内容


人工智能之神经网络特训班课程过半,这些内容关键点你不能错过人工智能之神经网络特训班课程过半,这些内容关键点你不能错过

Hopfield网络的相关内容

对于邓老师的讲解,课后学员们给予了非常高的评价,我们摘取了一小部分:

  • 学员A:我是个有一定从业的人,邓老师考虑了普适性,今天的课程主要面向初学者的。不过我听了后都学到了不少东西。同时我也期待下几次课里对神经网络的讲述能带来更多干货;

  • 学员B:其他培训机构重点讲实战,唯独没有请顶级大学的教授讲理论的。听别家讲理论,老师自己都说自己没讲明白。邓老师讲resnet的理论,可以填补市场上的空白;

  • 学员C:Hopfield 的这段讲的真好,老师在短时间内介绍了很多东西。主办方可以考虑开个长期一些的课,针对不同需求。

怎么样,看到这里是不是跃跃欲试?

那么本周末,邓教授又会带来哪些精彩内容呢?我们不妨稍微剧透一下:

  • CNN 的发展历程,基本原理,典型模型 (包括 AlexNet、VGG、GoogLeNet、ResNet等);

  • CNN 的编程实操剖析;

  • 为什么说 CNN 是目前人工智能的主要进展?

人工智能之神经网络特训班课程过半,这些内容关键点你不能错过

相信聪明的你绝对不会错过!






本文作者:恒亮
本文转自雷锋网禁止二次转载, 原文链接
目录
相关文章
|
2月前
|
机器学习/深度学习 算法 TensorFlow
动物识别系统Python+卷积神经网络算法+TensorFlow+人工智能+图像识别+计算机毕业设计项目
动物识别系统。本项目以Python作为主要编程语言,并基于TensorFlow搭建ResNet50卷积神经网络算法模型,通过收集4种常见的动物图像数据集(猫、狗、鸡、马)然后进行模型训练,得到一个识别精度较高的模型文件,然后保存为本地格式的H5格式文件。再基于Django开发Web网页端操作界面,实现用户上传一张动物图片,识别其名称。
93 1
动物识别系统Python+卷积神经网络算法+TensorFlow+人工智能+图像识别+计算机毕业设计项目
|
9天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
38 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
25天前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
72 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
2月前
|
机器学习/深度学习 人工智能 算法
植物病害识别系统Python+卷积神经网络算法+图像识别+人工智能项目+深度学习项目+计算机课设项目+Django网页界面
植物病害识别系统。本系统使用Python作为主要编程语言,通过收集水稻常见的四种叶片病害图片('细菌性叶枯病', '稻瘟病', '褐斑病', '稻瘟条纹病毒病')作为后面模型训练用到的数据集。然后使用TensorFlow搭建卷积神经网络算法模型,并进行多轮迭代训练,最后得到一个识别精度较高的算法模型,然后将其保存为h5格式的本地模型文件。再使用Django搭建Web网页平台操作界面,实现用户上传一张测试图片识别其名称。
123 22
植物病害识别系统Python+卷积神经网络算法+图像识别+人工智能项目+深度学习项目+计算机课设项目+Django网页界面
|
13天前
|
机器学习/深度学习 人工智能 安全
人工智能与机器学习在网络安全中的应用
人工智能与机器学习在网络安全中的应用
39 0
|
2月前
|
机器学习/深度学习 人工智能 算法
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
鸟类识别系统。本系统采用Python作为主要开发语言,通过使用加利福利亚大学开源的200种鸟类图像作为数据集。使用TensorFlow搭建ResNet50卷积神经网络算法模型,然后进行模型的迭代训练,得到一个识别精度较高的模型,然后在保存为本地的H5格式文件。在使用Django开发Web网页端操作界面,实现用户上传一张鸟类图像,识别其名称。
109 12
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
|
1月前
|
机器学习/深度学习 人工智能 算法
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集('矮花叶病', '健康', '灰斑病一般', '灰斑病严重', '锈病一般', '锈病严重', '叶斑病一般', '叶斑病严重'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。再使用Django搭建Web网页操作平台,实现用户上传一张玉米病害图片识别其名称。
56 0
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
|
2月前
|
机器学习/深度学习 算法 TensorFlow
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
交通标志识别系统。本系统使用Python作为主要编程语言,在交通标志图像识别功能实现中,基于TensorFlow搭建卷积神经网络算法模型,通过对收集到的58种常见的交通标志图像作为数据集,进行迭代训练最后得到一个识别精度较高的模型文件,然后保存为本地的h5格式文件。再使用Django开发Web网页端操作界面,实现用户上传一张交通标志图片,识别其名称。
107 6
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
|
2月前
|
机器学习/深度学习 人工智能 算法
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
文本分类识别系统。本系统使用Python作为主要开发语言,首先收集了10种中文文本数据集("体育类", "财经类", "房产类", "家居类", "教育类", "科技类", "时尚类", "时政类", "游戏类", "娱乐类"),然后基于TensorFlow搭建CNN卷积神经网络算法模型。通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型,并保存为本地的h5格式。然后使用Django开发Web网页端操作界面,实现用户上传一段文本识别其所属的类别。
93 1
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
|
1月前
|
机器学习/深度学习 算法 数据建模
计算机前沿技术-人工智能算法-生成对抗网络-算法原理及应用实践
计算机前沿技术-人工智能算法-生成对抗网络-算法原理及应用实践
30 0

热门文章

最新文章