大数据精准营销的关键“三部曲”及核心“用户画像”

简介:

大数据时代,实现精准营销并非无规律可循,关键三部曲,其中用户画像是核心:

第一步:知己,意味着知道自己产品的定位是什么,产品卖点是什么等等。

构建产品标签+内容标签。

第二步:知彼,简单的说就是清楚竞争对手的情况、清楚目标用户的情况。

构建用户标签,识别自身竞争力,选取切入点。

第三步:作战,对不同的对象采取不同的策略,直击痛点,实现转化。

序言

大数据时代下,企业如何驾驭数据,利用数据驱动、支持决策,是形成差异化竞争优势的关键所在。这听起来不错,但如何真正落地,是非常不容易的事,尤其是传统企业。

对于企业来说,营销是关键的一步,也是数据驱动作用比较显性的一步,如何通过对数据的采集、处理、分析,洞察用户需求,精准找到目标用户群并提供相应的方案,从而实现企业盈利、用户体验双赢,是顺应时代大势。

什么是精准营销

精准营销

精准营销的概念是科特勒在05年的时候提出来的,科特勒是现代营销学之父,他写的《营销管理》非常经典。 这个精准营销的概念是这么定义的:在精准定位的基础上,依托现代信息技术手段建立个性化的顾客沟通服务体系,实现企业可度量的低成本扩张之路。

简单来说就是:5个合适,在合适的时间、合适的地点、将合适的产品以合适的方式提供给合适的人。这就跟我们人际交往中的男女恋爱是比较相似的。必须是对的时间遇到对的人。

精准营销怎么做

怎么做

  营销三部曲:知己、知彼、作战

1、知己

意味着知道自己产品的定位是什么,产品卖点是什么等等。构建产品标签+内容标签。

2、知彼

简单的说就是清楚竞争对手的情况、清楚目标用户的情况。构建用户标签,识别自身竞争力,选取切入点。

3、作战

在这个基础上,对不同的对象采取不同的策略,直击痛点,实现转化。

精准营销核心:用户画像

在对企业自身情况和产品情况分析这个环节,重点就是,可以根据产品特征,定位出我们的目标用户。接下来,我们就要对目标用户进行分析。怎么分析?这就需要对用户进行画像。

1. 什么是用画像?

用户画像

用户画像,简单来说就是通过一系列简短、精炼、易识别的语言来描述一个人/物。

比如说,范冰冰,性别:女;职业:演员;年龄:30多岁;婚姻状态:已婚/未婚;收入情况:高;大家可以从自己关注的角度去了解,这里就不多说了。

但是要强调一下:用户画像不是一个数学问题,也不是技术问题,实际上是一个业务问题。关键在于我们希望从哪些角度去了解我们的用户,这个是跟我们的目的相关的。

比如,我们想追求范冰冰,那关注点应该是婚姻情况/恋爱情况,喜欢吃什么,有什么爱好;那如果我们是希望给她推荐化妆品,那关注点可能就是,皮肤是不是敏感、油性还是干性这些了。关键还是业务问题,但是用户画像的实现更多是技术问题,主要是给用户打标签。

2. 用户画像怎么做?

怎么来做

这里的标签,就是刚才我们提到的观察的一个角度,比如,性别、年龄、爱好、家庭情况、购买能力等。

具体来讲,当为用户画像时,需要以下三个步骤:

第一步:数据采集,因为我们用户画像是为了了解用户,因此需要收集用户所有的数据,主要包括静态信息数据、动态信息数据两大类,静态数据就是用户相对稳定的信息,如性别、地域、职业、消费等级等,动态数据就是用户不停变化的行为信息,如网页浏览行为、购买行为等;

第二步:分析这些数据,给用户打上标签和指数,标签代表用户对该内容有兴趣、偏好、需求等,指数代表用户的兴趣程度、需求程度、购买概率等;

最后将这些标签综合起来,我们对用户就有大概的了解了。

3. 用户画像怎么用?

怎么用

在完成用户画像之后,我们就可以用来精准营销,当然用户画像还有其他的应用场景,比如用户洞察、个性化推荐之类的应用,或者直接进行数据变现。具体的应用场景需要根据公司、业务的具体情况进行应用场景设计。

本文转自d1net(转载)

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
23天前
|
机器学习/深度学习 搜索推荐 数据可视化
大数据用户画像之基本概念
大数据用户画像利用大数据技术分析用户基本信息、消费行为、兴趣、社交及地理数据,创建详细用户模型,助力企业精准营销。涉及技术包括数据挖掘、大数据处理(Hadoop、Spark)、数据可视化、机器学习和数据库管理。通过用户画像,企业可实现市场定位、个性化推荐、精准广告、产品优化和风险控制。学习该领域需掌握多个技术栈,包括相关算法、工具及业务理解。
|
1月前
|
人工智能 搜索推荐 大数据
如何利用大数据进行智能化营销?
【5月更文挑战第14天】如何利用大数据进行智能化营销?
38 0
|
1月前
|
数据可视化 大数据 数据挖掘
瓴羊荣获2023虎啸奖“年度十大AI&大数据服务公司”“数智营销案例铜奖”双重大奖
瓴羊荣获2023虎啸奖“年度十大AI&大数据服务公司”“数智营销案例铜奖”双重大奖
|
1月前
|
分布式计算 搜索推荐 算法
用户画像系列——Lookalike在营销圈选扩量中的应用
用户画像系列——Lookalike在营销圈选扩量中的应用
95 0
|
10月前
|
SQL 数据采集 搜索推荐
开源大数据分析实验(4)——简单用户画像分析之数据可视化展现
本场景主要介绍基于海量日志数据进行简单用户画像分析为背景,如何通过使用DataWorks完成数据采集 、加工数据、配置数据质量监控和数据可视化展现等任务。
|
10月前
|
数据采集 SQL 监控
开源大数据分析实验(3)——简单用户画像分析之配置数据质量监控
本场景主要介绍基于海量日志数据进行简单用户画像分析为背景,如何通过使用DataWorks完成数据采集 、加工数据、配置数据质量监控和数据可视化展现等任务。
|
10月前
|
SQL 分布式计算 运维
开源大数据分析实验(2)——简单用户画像分析之加工数据
本场景主要介绍基于海量日志数据进行简单用户画像分析为背景,如何通过使用DataWorks完成数据采集 、加工数据、配置数据质量监控和数据可视化展现等任务。
|
10月前
|
SQL 分布式计算 调度
开源大数据分析实验(1)——简单用户画像分析之采集数据
本场景主要介绍基于海量日志数据进行简单用户画像分析为背景,如何通过使用DataWorks完成数据采集 、加工数据、配置数据质量监控和数据可视化展现等任务。
|
10月前
|
搜索推荐 关系型数据库 数据库
沉浸式学习PostgreSQL|PolarDB 3: 营销场景, 根据用户画像的相似度进行目标人群圈选, 实现精准营销
业务场景1 介绍: 营销场景, 根据用户画像的相似度进行目标人群圈选, 实现精准营销 在营销场景中, 通常会对用户的属性、行为等数据进行统计分析, 生成用户的标签, 也就是常说的用户画像. 标签举例: 男性、女性、年轻人、大学生、90后、司机、白领、健身达人、博士、技术达人、科技产品爱好者、2胎妈妈、老师、浙江省、15天内逛过手机电商店铺、... ... 有了用户画像, 在营销场景中一个重要的营销手段是根据条件选中目标人群, 进行精准营销. 例如圈选出包含这些标签的人群: 白领、科技产品爱好者、浙江省、技术达人、15天内逛过手机电商店铺 .
270 0
|
新零售 存储 供应链
案例酷 | 九阳股份:小家电,大数据,精准营销圈粉新生代
编者按: 在数字经济蓬勃发展的当下,千行百业都在紧抓时代机遇转型升级。在小家电领域,数智化转型成为家电行业的热词,家电业的头部企业也纷纷走上数智化“花路”。其中,作为小家电领导品牌之一,九阳从单品类起家,通过一路披荆斩棘,不断超越自己走到小家电领先地位,秉承健康和创新的核心DNA,九阳积极引领厨房小家电升级换代,创新营销玩法,推动数智化转型,品牌转型取得明显成效。 全文约4812字,建议阅读时间14分钟。
269 0

热门文章

最新文章