阿里云可观测联合 Datadog 发布 OpenTelemetry Go 自动插桩工具

简介: 面对 Go 语言长期缺乏成熟自动插桩方案的困境,阿里云联合 Datadog 推出 OpenTelemetry Go 编译时插桩工具,无需修改代码,只需 ./otel-go build,即可为 HTTP、gRPC、Redis 等组件自动注入链路追踪与指标采集能力。现已开源,欢迎试用!

作者:杨易(青风)


在云原生可观测性领域,OpenTelemetry 已经成为事实上的标准。相比于 Java 拥有成熟的字节码增强技术,Go 语言作为静态编译型语言,长期以来缺乏一种成熟、低侵入的自动插桩方案。目前的现有方案主要有:


  1. eBPF:功能强大但主要偏向系统调用层面,对应用层上下文(如 HTTP Header 传播)的处理较为复杂。
  2. 手动埋点:代码改动大,维护成本高,不仅要改业务代码,还得改依赖库的调用方式,显式地在各个关键节点添加 Trace 和 Metrics 逻辑。


为此,阿里云可观测团队和程序语言团队探索了 Go 编译时插桩解决方案,并将其核心能力捐赠给 OpenTelemetry 社区,形成了 opentelemetry-go-compile-instrumentation[1]项目。在和 Datadog、Quesma 等公司的共同努力下,我们发布了首个预览版本 v0.1.0[2]


工作原理


自动插桩工具的核心在于利用 Go 编译器的 -toolexec 参数。-toolexec会拦截 Go 编译命令,替换成我们的插桩工具。这样,在代码被编译之前,我们就有机会对它进行分析和修改。整个过程可以概括为两个阶段:


1. 依赖分析

在编译开始前,工具会分析应用的构建流程(go build -n),识别出项目中使用的第三方库如 net/http, grpc, redis 等。然后,它会自动生成一个文件otel.runtime.go,将对应的 Hook 代码(监测逻辑,后面用 Hook 代码表示)引入到构建依赖中。


2. 代码注入

当编译器处理目标函数时,工具利用 -toolexec拦截编译,然后修改该目标函数的代码,在函数入口插入一段蹦床代码(Trampoline Code),蹦床代码会跳转到预先写好的 Hook 函数中。


  • 进入函数前(Before):Hook 记录开始时间,提取上下文信息(如 HTTP Headers),启动 Span。
  • 函数执行:执行原有的业务逻辑。
  • 退出函数后(After):Hook 捕获返回值或 Panic,结束 Span,记录耗时。


这种方式的优点是零运行时开销(除了必要的监测逻辑执行时间),因为插桩是直接编译进二进制文件的,不需要像 eBPF 那样在内核态和用户态之间切换,也不需要像 Java Agent 那样在启动时加载。


HTTP 插桩示例


让我们通过一个简单的 HTTP 例子来看看它是如何使用的。


package main
import ...
func main() {
    http.HandleFunc("/greet", func(w http.ResponseWriter, r *http.Request) {
        w.Write([ ]byte("Hello, OpenTelemetry!"))
    })
    log.Fatal(http.ListenAndServe(":8080", nil))
}


手动插桩

需要手动引入 OpenTelemetry SDK,手动创建 Tracer,在 Handler 里手动 StartEnd Span。


package main
import ...
func initTracer() func(context.Context) error { 
  /* ...几十行初始化代码... */
}
func main() {
    // 1. 初始化 Tracer
    shutdown := initTracer()
    defer shutdown(context.Background())
    // 2. 包装 Handler
    handler := http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
        // 3. 手动提取 Context,开始 Span
        tracer := otel.Tracer("demo-server")
        ctx, span := tracer.Start(r.Context(), "GET /greet")
        // 4. 确保结束 Span
        defer span.End() 
        // 5. 可能还需要手动记录属性
        span.SetAttributes(attribute.String("http.method", "GET"))
        w.Write([]byte("Hello, OpenTelemetry!"))
    })
    // 6. ListenAndServe 也可能需要包装...
    log.Fatal(http.ListenAndServe(":8080", handler))
}


对于成百上千个接口的微服务,这种改造成本是灾难性的。


自动插桩

  1. 下载工具:到 Release 页面[2]下载
  2. 编译应用:./otel-linux-amd64 go build -o myapp
  3. 配置运行:export OTEL_EXPORTER_OTLP_ENDPOINT="http://localhost:4317"export OTEL_SERVICE_NAME="my-app"./myapp


编译器会默默地将 HTTP 请求的监测逻辑“织入”到应用二进制文件中。配置好 OpenTelemetry 的导出端点(如 Jaeger 或控制台),运行生成的 server。访问 /greet 接口时, Tracing 数据已经自动生成并上报了,包含了请求路径、耗时、状态码等信息。


从商业化到开源


我们在深度实践 eBPF 技术的过程中,虽然认可其强大,但也发现它难以完美处理应用层上下文。更重要的是,我们不断听到用户反馈,大家对繁琐的手动埋点和高昂的维护成本感到困扰。


为了解决这个痛点,我们开始探索 Go 编译时自动插桩方案,将其上线至阿里云可观测 ARMS 产品[3],在这片最严苛的“试验田”里不断迭代,逐步演化成一套成熟的解决方案,不仅能实现零代码修改的链路追踪,还扩展支持了丰富的指标统计、Runtime 监控乃至持续剖析等高级功能,甚至还可以通过自定义扩展的功能完成对企业内部 sdk 的埋点[4]

1768271537585_fe60b5d1f51547e99889aeb7b35fc97d.png

调用链分析

1768271547764_cfb2e57ae3cd4ac0986fb4ab457c3b11.png

持续剖析


这套方案在电商、短剧、AI 视频、汽车等众多领域客户处得到了成功验证。在看到它为用户带来巨大价值、并验证了其稳定性和可行性后,我们决定将其核心能力贡献给 OpenTelemetry 社区,希望它能成为一个普惠的技术。同时,我们与可观测领域的顶尖厂商 Datadog 协作,共同推进,最终促成了这个官方项目[1]的诞生。


目前项目处于活跃开发阶段,欢迎大家试用、反馈并参与贡献,共同构建更美好的云原生可观测生态。

相关链接:

[1] OpenTelemetry Go 编译插桩项目

https://github.com/open-telemetry/opentelemetry-go-compile-instrumentation

[2] Release 链接

https://github.com/open-telemetry/opentelemetry-go-compile-instrumentation/releases/tag/v0.1.0

[3] 阿里云 ARMS Go Agent 商业版

https://help.aliyun.com/zh/arms/application-monitoring/user-guide/monitoring-the-golang-applications

[4] 自定义扩展

https://help.aliyun.com/zh/arms/application-monitoring/use-cases/use-golang-agent-to-customize-scalability

相关实践学习
通过轻量消息队列(原MNS)主题HTTP订阅+ARMS实现自定义数据多渠道告警
本场景将自定义告警信息同时分发至多个通知渠道的需求,例如短信、电子邮件及钉钉群组等。通过采用轻量消息队列(原 MNS)的主题模型的HTTP订阅方式,并结合应用实时监控服务提供的自定义集成能力,使得您能够以简便的配置方式实现上述多渠道同步通知的功能。
相关文章
|
20天前
|
存储 人工智能 运维
阿里云全新发布的 UModel 是什么
当可观测数据被建模为可理解、可行动的上下文图谱,AIOps 才真正拥有了落地的土壤。
160 15
|
28天前
|
人工智能 安全 API
Nacos 安全护栏:MCP、Agent、配置全维防护,重塑 AI Registry 安全边界
Nacos安全新标杆:精细鉴权、无感灰度、全量审计!
565 65
|
19天前
|
存储 数据采集 弹性计算
面向多租户云的 IO 智能诊断:从异常发现到分钟级定位
当 iowait 暴涨、IO 延迟飙升时,你是否还在手忙脚乱翻日志?阿里云 IO 一键诊断基于动态阈值模型与智能采集机制,实现异常秒级感知、现场自动抓取、根因结构化输出,让每一次 IO 波动都有据可查,真正实现从“被动响应”到“主动洞察”的跃迁。
231 55
|
24天前
|
存储 缓存 调度
阿里云Tair KVCache仿真分析:高精度的计算和缓存模拟设计与实现
在大模型推理迈向“智能体时代”的今天,KVCache 已从性能优化手段升级为系统级基础设施,“显存内缓存”模式在长上下文、多轮交互等场景下难以为继,而“以存代算”的多级 KVCache 架构虽突破了容量瓶颈,却引入了一个由模型结构、硬件平台、推理引擎与缓存策略等因素交织而成的高维配置空间。如何在满足 SLO(如延迟、吞吐等服务等级目标)的前提下,找到“时延–吞吐–成本”的最优平衡点,成为规模化部署的核心挑战。
389 38
阿里云Tair KVCache仿真分析:高精度的计算和缓存模拟设计与实现
|
26天前
|
人工智能 Cloud Native
云原生为基,AI为翼:回望阿里云云原生的2025年
感谢支持,新的一年继续携手同行。
|
3月前
|
人工智能 缓存 供应链
森马如何用阿里云 AI 网关,轻松实现“AI+业务”高效落地
森马快速实现 AI 转型,通过阿里云 AI 网关(即 Higress 企业版)及注册配置中心 Nacos3.0 实现了多模型多 MCP server 统一接入统一管理统一配置,将存量服务一键转换为 MCP server,使 AI 与生产业务相结合,综合提效 30%。
392 29
|
20天前
|
人工智能 弹性计算 运维
探秘 AgentRun丨为什么应该把 LangChain 等框架部署到函数计算 AgentRun
阿里云函数计算 AgentRun,专为 AI Agent 打造的一站式 Serverless 基础设施。无缝集成 LangChain、AgentScope 等主流框架,零代码改造即可享受弹性伸缩、企业级沙箱、模型高可用与全链路可观测能力,助力 Agent 高效、安全、低成本地落地生产。
299 48
|
2月前
|
人工智能 运维 安全
探秘 AgentRun丨流量一大就瘫痪?如何解决 AI 模型调用之痛
AgentRun 通过完整的模型管理和治理能力,解决模型调用的可靠性的难题。
|
2月前
|
数据采集 人工智能 运维
AgentRun 实战:快速构建 AI 舆情实时分析专家
搭建“舆情分析专家”,函数计算 AgentRun 快速实现从数据采集到报告生成全自动化 Agent。
809 56

热门文章

最新文章