线性结构检索:从数组和链表的原理初窥检索本质

简介: 本文探讨数组与链表的存储特性及其对检索效率的影响。数组连续存储,支持随机访问,适合二分查找,检索效率为O(log n);链表非连续存储,不支持随机访问,检索效率为O(n),但插入删除更高效。通过合理组织数据结构,如结合两者优势改进链表,可提升检索性能,体现“减少查询范围”的核心思想。

线性结构检索:从数组和链表的原理初窥检索本质
今天我们主要探讨的是,对于数组和链表这样的线性结构,我们是怎么检索的。希望通过这个探讨的过程,你能深入理解检索到底是什么。
你可以先思考一个问题:什么是检索?从字面上来理解,检索其实就是将我们所需要的信息,从存储数据的地方高效取出的一种技术。所以,检索效率和数据存储的方式是紧密联系的。具体来说,就是不同的存储方式,会导致不同的检索效率。那么,研究数据结构的存储特点对检索效率的影响就很有必要了。
那今天,我们就从数组和链表的存储特点入手,先来看一看它们是如何进行检索的。
数组和链表有哪些存储特点?
数组的特点相信你已经很熟悉了,就是用一块连续的内存空间来存储数据。那如果我申请不到连续的内存空间怎么办?这时候链表就可以派上用场了。链表可以申请不连续的空间,通过一个指针按顺序将这些空间串起来,形成一条链,链表 也正是因此得名。不过,严格意义上来说,这个叫 单链表。如果没有特别说明,下面我所提到的链表,指的都是只有一个后续指针的单链表。
从图片中我们可以看出,数组和链表分别代表了连续空间和不连续空间的最基础的存储方式,它们是线性表(Linear List)的典型代表。其他所有的数据结构,比如栈、队列、二叉树、B+ 树等,都不外乎是这两者的结合和变化。以栈为例,它本质就是一个限制了读写位置的数组,特点是只允许后进先出。
因此,我们只需要从最基础的数组和链表入手,结合实际应用中遇到的问题去思考解决方案,就能逐步地学习和了解更多的数据结构和检索技术。
那么,数组和链表这两种线性的数据结构的检索效率究竟如何呢?我们来具体看一下。
如何使用二分查找提升数组的检索效率?
首先,如果数据是无序存储的话,无论是数组还是链表,想要查找一个指定元素是否存在,在缺乏数据分布信息的情况下,我们只能从头到尾遍历一遍,才能知道其是否存在。这样的检索效率就是 O(n)。当然,如果数据集不大的话,其实直接遍历就可以了。但如果数据集规模较大的话,我们就需要考虑更高效的检索方式。
对于规模较大的数据集,我们往往是先将它通过排序算法转为有序的数据集,然后通过一些检索算法,比如 二分查找算法 来完成高效的检索。
二分查找也叫折半查找,它的思路很直观,就是将有序数组二分为左右两个部分,通过只在半边进行查找来提升检索效率。那二分查找具体是怎么实现的呢?让我们一起来看看具体的实现步骤。
我们首先会从中间的元素查起,这就会有三种查询结果。
第一种,是中间元素的值等于我们要查询的值。也就是,查到了,那直接返回即可。
如果中间元素的值小于我们想查询的值,那接下来该怎么查呢?这就是第二种情况了。数组是有序的,所以我们以中间元素为分隔,左半边的数组元素一定都小于中间元素,也就是小于我们想查询的值。因此,我们想查询的值只可能存在于右半边的数组中。
对于右半边的数组,我们还是可以继续使用二分查找的思路,再从它的中间查起,重复上面的过程。这样不停地「二分」下去,每次的检索空间都能减少一半,整体的平均查询效率就是 O(log n),远远小于遍历整个数组的代价 O(n)。
同理,对于第三种情况,如果中间元素的值大于我们想查询的值,那么我们就只在左边的数组元素查找即可。
由此可见,合理地组织数据的存储可以提高检索效率。检索的核心思路,其实就是通过合理组织数据,尽可能地快速减少查询范围。在专栏后面的章节中,我们会看到更多的检索算法和技术,其实它们的本质都是通过灵活应用各种数据结构的特点来组织数据,从而达到快速减少查询范围的目的。
链表在检索和动态调整上的优缺点
前面我们说了,数据无序存储的话,链表的检索效率很低。那你可能要问了,有序的链表好像也没法儿提高检索效率啊,这是为什么呢?你可以先停下来自己思考一下,然后再看我下面的讲解。
数组的「连续空间存储」带来了可随机访问的特点。在有序数组应用二分查找时,它以 O(1) 的时间代价就可以直接访问到位于中间的数值,然后以中间的数值为分界线,只选择左边或右边继续查找,从而能快速缩小查询范围。
而链表并不具备「随机访问」的特点。当链表想要访问中间的元素时,我们必须从链表头开始,沿着链一步一步遍历过去,才能访问到期望的数值。如果要访问到中间的节点,我们就需要遍历一半的节点,时间代价已经是 O(n/2) 了。从这个方面来看,由于少了「随机访问位置」的特性,链表的检索能力是偏弱的。
但是,任何事情都有两面性,链表的检索能力偏弱,作为弥补,它在动态调整上会更容易。我们可以以 O(1) 的时间代价完成节点的插入和删除,这是「连续空间」的数组所难以做到的。毕竟如果我们要在有序的数组中插入一个元素,为了保证「数组有序」,我们就需要将数组中排在这个元素后面的元素,全部顺序后移一位,这其实是一个 O(n) 的时间代价了。
因此,在一些需要频繁插入删除数据的场合,有序数组不见得是最合适的选择。另一方面,在数据量非常大的场合,我们也很难保证能申请到连续空间来构建有序数组。因此,学会合理高效地使用链表,也是非常重要的。
如何灵活改造链表提升检索效率?
本质上,我们学习链表,就是在学习「非连续存储空间」的组织方案。我们知道,对于非连续空间,可以用指针将它串联成一个整体。只要掌握了这个思想,我们就可以在不同的应用场景中,设计出适用的数据结构,而不需要拘泥于链表自身的结构限制。
我们可以来看一个简单的改造例子。
比如说,如果我们觉得链表一个节点一个节点遍历太慢,那么我们是不是可以对它做一个简单的改造呢?在掌握了链表的核心思想后,我们很容易就能想到一个改进方案,那就是让链表每个节点不再只是存储一个元素,而是存储一个小的数组。这样我们就能大幅减少节点的数量,从而减少依次遍历节点带来的「低寻址效率」。
比如说,我的链表就只有两个节点,每个节点都存储了一个小的有序数组。这样在检索的时候,我可以用二分查找的思想,先查询第一个节点存储的小数组的末尾元素,看看是否是我们要查询的数字。如果不是,我们要么在第一个节点存储的小数组里,继续二分查找;要么在第二个节点存储的小数组里,继续二分查找。这样的结构就能同时兼顾数组和链表的特点了,而且时间代价也是 O(log n)。
可见,尽管常规的链表只能遍历检索,但是只要我们掌握了 非连续存储空间可以灵活调整 的特性,就可以设计更高效的数据结构和检索算法了。
重点回顾
好了,这一讲的内容差不多了,我们一起回顾一下这一讲的主要内容:以数组和链表为代表的线性结构的检索技术和效率分析。
首先,我们学习了具体的检索方法。对于无序数组,我们可以遍历检索。对于有序数组,我们可以用二分查找。链表具有灵活调整能力,适合用在数据频繁修改的场合。
其次,你应该也开始体会到了检索的一些核心思想:合理组织数据,尽可能快速减少查询范围,可以提升检索效率。
今天的内容其实不难,涉及的核心思想看起来也很简单,但是对于我们掌握检索这门技术非常重要,你一定要好好理解。
随着咱们的课程深入,后面我们会一一解锁更多高级的检索技术和复杂系统,但是核心思路都离不开我们今天所学的内容。
因此,从最基础的数组和链表入手,之后结合具体的问题去思考解决方案,这样可以帮助你一步一步建立起你的知识体系,从而更好地掌握检索原理,达到提高代码效率,提高系统设计能力的目的。
课堂讨论
结合今天学习的数组和链表的检索技术和效率分析,你可以思考一下这两个问题。
对于有序数组的高效检索,我们为什么使用二分查找算法,而不是 3-7 分查找算法,或 4-6 分查找算法?
二分查找概率更加均匀,没有偏向任何一端,性能波动小。它更加平衡,整体性能稳定,能避免出现最坏情况,否则如果是一直在大的一边查找,那么查找次数就会变多
对于单个查询值 k,我们已经熟悉了如何使用二分查找。那给出两个查询值 x 和 y 作为查询范围,如果要在有序数组中查找出大于 x 和小于 y 之间的所有元素,我们应该怎么做呢?
笔者认为:使用两次二分查找找到数组中最小和最大的元素的下标,再按下标取出来即可

相关文章
|
2月前
|
存储 缓存 NoSQL
存储系统:从检索技术角度剖析 LevelDB 的架构设计思想
LevelDB是Google开源的高性能键值存储系统,基于LSM树优化,采用跳表、读写分离、SSTable分层与Compaction等技术,结合BloomFilter、缓存机制与索引分离设计,显著提升数据读写与检索效率,广泛应用于工业级系统中。(238字)
|
2月前
|
存储 机器学习/深度学习 算法
最近邻检索(下):如何用乘积量化实现「拍照识花」功能?
AI时代,以图搜图、拍图识物广泛应用。其核心是图片特征提取与高维向量相似检索。本文解析聚类算法(如K-Means)与局部敏感哈希的区别,详解乘积量化压缩向量、倒排索引加速检索的技术原理,揭示图像检索背后的高效机制。(238字)
|
2月前
|
机器学习/深度学习 数据采集 自然语言处理
搜索引擎:输入搜索词以后,搜索引擎是怎么工作的?
搜索引擎通过爬虫抓取网页,经索引系统处理生成倒排索引,再由检索系统结合分词、纠错、推荐等技术理解用户意图,利用位置信息和最小窗口排序,精准返回结果。其核心在于以查询词为约束,实现高效相关性匹配。
|
2月前
|
机器学习/深度学习 搜索推荐 算法
广告系统:广告引擎如何做到在 0.1s 内返回广告信息?
广告系统是互联网核心营收支柱,支撑Google、Facebook等公司超80%收入。其本质是高并发、低延迟的实时检索系统,需在0.1秒内完成百万级广告匹配。本文详解广告引擎架构:通过标签过滤、树形分片优化索引;引入向量检索实现智能匹配;采用非精准打分预筛+深度学习精排的混合排序策略;并在离线索引构建时前置过滤无效广告,压缩检索空间。结合业务特点,从索引、召回到排序全方位提升性能,保障高效精准投放。
|
2月前
|
自然语言处理 运维 负载均衡
索引拆分:大规模检索系统如何使用分布式技术加速检索?
本文介绍了分布式技术在大规模检索系统中的应用,重点探讨了如何通过索引拆分提升检索效率。常见的拆分方式有基于业务、文档(水平拆分)和关键词(垂直拆分)。其中,基于文档的拆分更易维护:新增文档仅影响一个分片,且负载更均衡,支持副本扩容应对热点查询,系统可扩展性强,是工业界主流方案。(238字)
|
2月前
|
机器学习/深度学习 算法 搜索推荐
精准 Top K 检索:搜索结果是怎么进行打分排序的?
搜索引擎排序直接影响用户体验,核心是Top K检索。本文介绍三种打分算法:经典TF-IDF衡量词项权重;BM25在此基础上优化,引入文档长度、词频饱和等因子;机器学习则融合数百特征自动学习权重,提升排序精度。最后通过堆排序高效实现Top K结果返回,兼顾性能与效果。(239字)
|
2月前
|
存储 NoSQL 定位技术
空间检索(上):如何用 Geohash 实现「查找附近的人」功能?
本文介绍了如何高效实现“查找附近的人”功能,提出基于Geohash的区域编码与索引方案。通过将二维空间划分为带层次的编码区域,利用一维索引(如跳表、哈希表)快速检索目标区域及邻接区域用户,结合非精准与精准Top K检索策略,在保证性能的同时控制误差。适用于社交、出行等LBS场景。
|
2月前
|
机器学习/深度学习 搜索推荐 算法
非精准 Top K 检索:如何给检索结果的排序过程装上加速器?
本文介绍了非精准 Top K 检索的优化思路及三种实现方法:基于静态质量得分排序截断、胜者表利用词频打分、分层索引两阶段检索。核心思想是将计算前置至离线阶段,降低在线打分开销,通过快速截断提升检索效率。该方法广泛应用于搜索与推荐系统,结合精准排序形成高效两级检索架构。
|
2月前
|
安全 Java 开发者
高效使用 Java Optional:告别 NullPointerException
高效使用 Java Optional:告别 NullPointerException
254 120
|
2月前
|
缓存 监控 测试技术
llama.cpp Server 引入路由模式:多模型热切换与进程隔离机制详解
llama.cpp 于2025年12月11日发布路由模式,支持多模型动态加载与毫秒级切换,无需重启服务。采用多进程隔离架构,兼容OpenAI API,支持自动发现、按需加载、LRU淘汰及手动管理,显著提升本地多模型协作的效率与稳定性,是轻量级推理服务框架的重要升级。
310 3
llama.cpp Server 引入路由模式:多模型热切换与进程隔离机制详解