人工智能六大领域保障网络安全 保护物联网设备不在话下

简介:

保护您的数字资产是任何企业和个人的明确需要,无论您是想保护您的个人照片,公司的知识产权,客户的敏感数据,还是任何其他可能会影响您的声誉或业务的任何东西。

即使保护网络安全的耗费已经动辄数十亿美元,但网络攻击的报道数量只增不减。 AI 的预测能力可以运用于许多领域,可以应用于安全供应商、所有用户和企业。Yakir Golan 为读者们总结了网络防御创新的六个关键领域。

一、检测并阻止物联网(IoT)设备被黑客攻击

思科公司预测,全球联网设备的数量将从目前的 150 亿部上升到 2020 年的 500 亿部。由于硬件和软件资源有限,很多设备没有基本的安全措施。最近,黑客入侵知名安全博客 KerbsOnSecurity 的物联网(IoT)设备,使得 KerbsOnSecurity 遭受了大规模分布式拒绝服务攻击。更可怕的是,用于对物联网发起网络攻击的 Mirai 恶意软件的源代码公之于众之后,使用Mirai的源代码可以对任何企业或个人进行网络攻击。

物联网安全是 AI 技术最突出的领域之一。物联网为 AI 提供预测模型,可以在低计算能力的设备上自主驻留和操作,可以发现和阻止设备或网络范围的可疑行为。

代表初创公司: CyberX,PFP Cybersecurity,Dojo-Labs 。

二、防止恶意软件和文件攻击

基于文件的攻击仍然是最主要的网络攻击方式之一。 最常见网络攻击的文件类型是可执行文件(.exe),Acrobat Reader(.pdf)和微软 Office 文件。单行代码中的微小变化可以生成新的恶意文件。新的文件具有相同的恶意意图,但具有不同签名的。 单行代码的小改变触发防病毒程序,并启动更先进的高级端点检测和 EDR 甚至网络系统来解决恶意的网络攻击。

有一些初创公司利用 AI 来解决这个问题。公司利用 AI 的巨大功能,查看每个可疑文件中数百万的特征,甚至可以检测出最轻微的代码改变。

代表初创公司: Cylance,Deep Instinct 和 Invincea 是基于文件的 AI 安全体系的领导者。

三、提高安全运营中心的运营效率

安全团队面临着一个关键的问题,每天收到过多的安全警报会带来警报疲劳。 据统计,北美企业平均每天处理近 1 万个安全警报。在许多情况下,尽管被标记为可疑的恶意软件也可能成为漏网之鱼。

人工智能可以将多个信息源之间的内部日志和具有外部威胁情报服务的监视系统的信息进行集成,对其中高度相关的事件进行自动分类。这个网络防御是最近的热点,因为它解决了拥有自己的安全操作中心(SOC)的大型企业的网络安全问题。

代表初创公司:Phantom,Jask,StatusToday 和 CyberLytic 等初创公司采用的就是这种 AI 技术以解决这种威胁。

四、量化风险

对企业面临的网络风险进行量化,是具有挑战性的。主要是由于缺乏历史数据,而且需要考虑大量的变量。 如今,有意量化自身面临风险的企业以及希望评估这些企业的第三方,例如网络保险公司,必须经历繁琐的网络风险评估过程。风险评估主要通过调查问卷,调查企业采取的措施是否符合网络安全标准,以及企业的治理和风险意识。 但其实这种方法不足以真正代表企业的网络风险状态。

AI 技术可以处理数百万个数据点并产生预测的能力,这为企业和网络保险公司获得最准确的网络风险估计。

代表初创公司:BitSight 和 Security Scorecard 等初创公司正在进行这项研究。

五、检测网络流量异常

对可能指示恶意活动的异常流量进行检测,这无疑是巨大的挑战,因为每个企业都具有特殊的流量行为。通过跨协议相关性,而不依赖于侵入式深度包检测,需要分析内部和外部网络流量中无尽的元数据之间的相关性。

代表初创公司:Vectra Networks,DarkTrace 和 BluVector 。

六、检测恶意移动应用

目前智能手机在全球范围内已经超过 25 亿台设备,爱立信公司预测,到 2020 年将达到 60 亿部。通过查看流行的 100 个 iOS 和 Android应用程序,Arxan 的研究显示,56%的 iOS 应用程序和 100%的 Android 应用程序都曾经遭受网络攻击。

事实上,Google Play 和苹果 App Store 这两家领先的应用商店,其应用程序均已经跨越了 200 万大关。这些移动应用程序需要被精确地自动分类。这种分类方法必须对最轻微的混淆技术敏感,能够区分恶意和良性的应用程序,而通过使用先进的 AI 技术可以有效地进行分类。.

本文转自d1net(转载)

相关实践学习
钉钉群中如何接收IoT温控器数据告警通知
本实验主要介绍如何将温控器设备以MQTT协议接入IoT物联网平台,通过云产品流转到函数计算FC,调用钉钉群机器人API,实时推送温湿度消息到钉钉群。
阿里云AIoT物联网开发实战
本课程将由物联网专家带你熟悉阿里云AIoT物联网领域全套云产品,7天轻松搭建基于Arduino的端到端物联网场景应用。 开始学习前,请先开通下方两个云产品,让学习更流畅: IoT物联网平台:https://iot.console.aliyun.com/ LinkWAN物联网络管理平台:https://linkwan.console.aliyun.com/service-open
目录
相关文章
|
6天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
115 55
|
1月前
|
人工智能 安全 算法
利用AI技术提升网络安全防御能力
【10月更文挑战第42天】随着人工智能技术的不断发展,其在网络安全领域的应用也日益广泛。本文将探讨如何利用AI技术提升网络安全防御能力,包括异常行为检测、恶意软件识别以及网络攻击预测等方面。通过实际案例和代码示例,我们将展示AI技术在网络安全防御中的潜力和优势。
|
1月前
|
人工智能 监控 物联网
深度探索人工智能与物联网的融合:构建未来智能生态系统###
在当今这个数据驱动的时代,人工智能(AI)与物联网(IoT)的深度融合正引领着一场前所未有的技术革命。本文旨在深入剖析这一融合背后的技术原理、探讨其在不同领域的应用实例及面临的挑战与机遇,为读者描绘一幅关于未来智能生态系统的宏伟蓝图。通过技术创新的视角,我们不仅揭示了AI与IoT结合的强大潜力,也展望了它们如何共同塑造一个更加高效、可持续且互联的世界。 ###
|
1月前
|
Web App开发 网络协议 安全
基于Web攻击的方式发现并攻击物联网设备介绍
基于Web攻击的方式发现并攻击物联网设备介绍
40 4
|
1月前
|
机器学习/深度学习 人工智能 安全
AI与网络安全:防御黑客的新武器
在数字化时代,网络安全面临巨大挑战。本文探讨了人工智能(AI)在网络安全中的应用,包括威胁识别、自动化防御、漏洞发现和预测分析,展示了AI如何提升防御效率和准确性,成为对抗网络威胁的强大工具。
|
1月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
79 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
1月前
|
安全 物联网 物联网安全
智能物联网安全:物联网设备的防护策略与最佳实践
【10月更文挑战第26天】随着物联网(IoT)技术的快速发展,智能设备已广泛应用于智能家居、工业控制和智慧城市等领域。然而,设备数量的激增也带来了严重的安全问题,如黑客攻击、数据泄露和恶意控制,对个人隐私、企业运营和国家安全构成威胁。因此,加强物联网设备的安全防护至关重要。
88 7
|
1月前
|
存储 人工智能 大数据
物联网、大数据、云计算、人工智能之间的关系
物联网、大数据、云计算、人工智能之间的关系是紧密相连、相互促进的。这四者既有各自独立的技术特征,又能在不同层面上相互融合,共同推动信息技术的发展和应用。
481 0
|
24天前
|
机器学习/深度学习 人工智能 安全
探索人工智能在网络安全中的创新应用
探索人工智能在网络安全中的创新应用
|
1月前
|
传感器 人工智能 安全
人工智能与物联网:智能家居的新时代
【10月更文挑战第31天】随着科技的发展,人工智能(AI)和物联网(IoT)的融合正引领我们进入全新的智能家居时代。本文探讨了这一技术趋势如何改变生活方式,提升家居的便捷性、高效性和安全性,并展望了未来的挑战和前景。

热门文章

最新文章

相关产品

  • 物联网平台
  • 下一篇
    DataWorks