【灵码助力Cuda算法分析】分析共享内存的矩阵乘法优化

简介: 本文介绍了如何利用通义灵码在Visual Studio 2022中对基于CUDA的共享内存矩阵乘法优化代码进行深入分析。文章从整体程序结构入手,逐步深入到线程调度、矩阵分块、循环展开等关键细节,最后通过带入具体值的方式进一步解析复杂循环逻辑,展示了通义灵码在辅助理解和优化CUDA编程中的强大功能。

前言

随着高性能计算飞速发展,异构计算已成为提升性能和效率的重要途径。特别是在图形处理单元(GPU)逐渐成为通用计算平台的背景下,GPU异构的研究和应用愈发引人注目。异构GPU计算结合了多种类型的计算资源,通过并行处理和协同工作,能够显著提高大规模数据处理、深度学习、科学计算等领域的计算能力。
GPU异构的主要平台为Cuda,基础任务是通过各种各样的软硬算法,实现矩阵乘法的优化。因为无论是模拟仿真的数值计算,还是人工智能算法的卷积、池化,归根到底还是对矩阵的处理。
而矩阵乘法的优化涉及到各种各样的矩阵拆解、计算、结合,本身对算法水平以及代码理解能力要求较高,且矩阵的拆解与计算比较抽象,过程难以模拟,此时一个帮助分析代码的“助手”就显得犹然可贵。本文主要利用通义灵码,对共享内存的矩阵乘法优化算法进行分析与拆解。

实验设备

CPU设备:i5-10210U(4核,8线程,1.60 GHz)
IDE和编译器:Visual Studio 2022/MSVC14
CUDA:12.3
优化选项:o2
通义灵码:通过Visual Studio 中安装。
具体教程如下:link

实验代码

#include <cuda_runtime.h>
#include <iostream>
#include <cstdlib>

// 定义FLOAT4宏来加载或存储4个浮点数
#define FLOAT4(x) (*((float4*)(&(x))))

// 定义OFFSET宏来计算全局内存地址
#define OFFSET(row, col, stride) ((row) * (stride) + (col))

// CUDA kernel function
__global__ void mySgemmV1Aligned(
    float* __restrict__ a, float* __restrict__ b, float* __restrict__ c,
    const int M, const int N, const int K)
{
    const int BM = 128;
    const int BN = 128;
    const int BK = 8;
    const int TM = 8;
    const int TN = 8;

    const int bx = blockIdx.x;
    const int by = blockIdx.y;
    const int tx = threadIdx.x;
    const int ty = threadIdx.y;
    const int tid = ty * blockDim.x + tx;

    __shared__ float s_a[BM][BK];
    __shared__ float s_b[BK][BN];

    float r_c[TM][TN] = { 0.0 };

    int load_a_smem_m = tid >> 1;
    int load_a_smem_k = (tid & 1) << 2;
    int load_b_smem_k = tid >> 5;
    int load_b_smem_n = (tid & 31) << 2;

    int load_a_gmem_m = by * BM + load_a_smem_m;
    int load_b_gmem_n = bx * BN + load_b_smem_n;

    for (int bk = 0; bk < (K + BK - 1) / BK; bk++) {
        int load_a_gmem_k = bk * BK + load_a_smem_k;
        int load_a_gmem_addr = OFFSET(load_a_gmem_m, load_a_gmem_k, K);
        FLOAT4(s_a[load_a_smem_m][load_a_smem_k]) = FLOAT4(a[load_a_gmem_addr]);

        int load_b_gmem_k = bk * BK + load_b_smem_k;
        int load_b_gmem_addr = OFFSET(load_b_gmem_k, load_b_gmem_n, N);
        FLOAT4(s_b[load_b_smem_k][load_b_smem_n]) = FLOAT4(b[load_b_gmem_addr]);

        __syncthreads();

#pragma unroll
        for (int k = 0; k < BK; k++) {
#pragma unroll
            for (int m = 0; m < TM; m++) {
#pragma unroll
                for (int n = 0; n < TN; n++) {
                    int comp_a_smem_m = ty * TM + m;
                    int comp_b_smem_n = tx * TN + n;
                    r_c[m][n] += s_a[comp_a_smem_m][k] * s_b[k][comp_b_smem_n];
                }
            }
        }

        __syncthreads();
    }

#pragma unroll
    for (int i = 0; i < TM; i++) {
        int store_c_gmem_m = by * BM + ty * TM + i;
#pragma unroll
        for (int j = 0; j < TN; j += 4) {
            int store_c_gmem_n = bx * BN + tx * TN + j;
            int store_c_gmem_addr = OFFSET(store_c_gmem_m, store_c_gmem_n, N);
            FLOAT4(c[store_c_gmem_addr]) = FLOAT4(r_c[i][j]);
        }
    }
}

int main()
{
    // 设定矩阵大小
    const int M = 1024;
    const int N = 1024;
    const int K = 1024;

    // 初始化主机端内存
    float* h_A = new float[M * K];
    float* h_B = new float[K * N];
    float* h_C = new float[M * N];

    // 随机初始化矩阵 A 和 B
    for (int i = 0; i < M * K; ++i) h_A[i] = static_cast<float>(rand()) / static_cast<float>(RAND_MAX);
    for (int i = 0; i < K * N; ++i) h_B[i] = static_cast<float>(rand()) / static_cast<float>(RAND_MAX);

    // 分配设备端内存
    float* d_A;
    float* d_B;
    float* d_C;
    cudaMalloc(&d_A, M * K * sizeof(float));
    cudaMalloc(&d_B, K * N * sizeof(float));
    cudaMalloc(&d_C, M * N * sizeof(float));

    // 将主机端数据复制到设备端
    cudaMemcpy(d_A, h_A, M * K * sizeof(float), cudaMemcpyHostToDevice);
    cudaMemcpy(d_B, h_B, K * N * sizeof(float), cudaMemcpyHostToDevice);

    // 启动CUDA内核
    const int BM = 128;
    const int BN = 128;
    dim3 blockSize(BM, BN);
    dim3 gridSize((N + BM - 1) / BM, (M + BN - 1) / BN);
    cudaEvent_t start, stop;
    float elapsed_time_ms = 0;
    cudaEventCreate(&start);
    cudaEventCreate(&stop);
    cudaEventRecord(start, 0);
    mySgemmV1Aligned << <gridSize, blockSize >> > (d_A, d_B, d_C, M, N, K);
    cudaEventRecord(stop, 0);
    cudaEventSynchronize(stop);
    cudaEventElapsedTime(&elapsed_time_ms, start, stop);
    std::cout << "Matrix multiplication took " << elapsed_time_ms << " ms." << std::endl;

    // 将结果从设备复制回主机
    cudaMemcpy(h_C, d_C, M * N * sizeof(float), cudaMemcpyDeviceToHost);

    // 释放内存
    cudaFree(d_A);
    cudaFree(d_B);
    cudaFree(d_C);
    delete[] h_A;
    delete[] h_B;
    delete[] h_C;

    return 0;
}

基于通义灵码的代码分析

开启功能

不同于VScode,首先,需要在Visual Studio中打开通义灵码的问答框。
路径为工具->通义灵码->通义灵码问答
image.png

程序整体分析

将程序整体拖入进行分析。根据通义灵码的帮助文档,合适的提示词也是非常重要的。在这里,我使用的提示词是:

您是一位经验丰富的Cuda算法工程师,请仔细分析以下代码并对其方法与实现方式做出详细描述。

image.png
可以看到通义灵码对代码的每一个部分做了总结,并对程序整体做了介绍,使我们大体了解了程序在做什么。

程序细节分析

在Cuda优化程序中,最抽象的部分莫过于线程调度与矩阵的分块。接着,我们针对mySgemmV1Aligned()函数使用通义灵码进行单独分析。
先提问线程索引tid划分部分,为什么a和b不对称。

    int load_a_smem_m = tid >> 1;
    int load_a_smem_k = (tid & 1) << 2;
    int load_b_smem_k = tid >> 5;
    int load_b_smem_n = (tid & 31) << 2;

    int load_a_gmem_m = by * BM + load_a_smem_m;
    int load_b_gmem_n = bx * BN + load_b_smem_n;

得到回答

image.png
接着是外层循环

for (int bk = 0; bk < (K + BK - 1) / BK; bk++) {
   
    int load_a_gmem_k = bk * BK + load_a_smem_k;
    int load_a_gmem_addr = OFFSET(load_a_gmem_m, load_a_gmem_k, K);
    FLOAT4(s_a[load_a_smem_m][load_a_smem_k]) = FLOAT4(a[load_a_gmem_addr]);

    int load_b_gmem_k = bk * BK + load_b_smem_k;
    int load_b_gmem_addr = OFFSET(load_b_gmem_k, load_b_gmem_n, N);
    FLOAT4(s_b[load_b_smem_k][load_b_smem_n]) = FLOAT4(b[load_b_gmem_addr]);

    __syncthreads();

得到回答
image.png
结合回答分析,外层循环主要起到了矩阵块切分的作用,将切分的块放到共享内存中以减少数据从全局内存中读取的时间延时。
然后是下个部分

#pragma unroll
        for (int k = 0; k < BK; k++) {
#pragma unroll
            for (int m = 0; m < TM; m++) {
#pragma unroll
                for (int n = 0; n < TN; n++) {
                    int comp_a_smem_m = ty * TM + m;
                    int comp_b_smem_n = tx * TN + n;
                    r_c[m][n] += s_a[comp_a_smem_m][k] * s_b[k][comp_b_smem_n];
                }
            }
        }

        __syncthreads();
    }

#pragma unroll
    for (int i = 0; i < TM; i++) {
        int store_c_gmem_m = by * BM + ty * TM + i;
#pragma unroll
        for (int j = 0; j < TN; j += 4) {
            int store_c_gmem_n = bx * BN + tx * TN + j;
            int store_c_gmem_addr = OFFSET(store_c_gmem_m, store_c_gmem_n, N);
            FLOAT4(c[store_c_gmem_addr]) = FLOAT4(r_c[i][j]);
        }
    }
}

得到回答
image.png

结合通义灵码可知,下面两步分别做了共享内存中的矩阵乘法与结果写回内存。

利用通义灵码带入具体值分析

上述部分我们从整体与局部的角度,分别利用通义灵码对代码进行了分析。但是对于矩阵,特别是二维大矩阵来说还是有些抽象,带入具体值进行分析。
如果手动拆解循环,不仅需要计算的东西很多,而且分析起来也不连贯,我们利用通义灵码进行具体的分析。我的提示词如下

我对以下循环不理解,请带入具体的值进行分析,带入不少于五组

在具体实践中,在IDE中选中代码,在问答中可以直接对选中的代码提问。
image.png

由图可见,通义灵码带入了具体的值分析了循环的过程,简洁明了。

总结

本文基于Visual Studio 2022下的通义灵码,对共享内存的矩阵乘法优化代码进行了分析,分别从整体、局部、具体值的角度,分析了代码功能及其实现方式,并演示了如何利用通义灵码进行提问与分析。

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
1月前
|
Web App开发 监控 JavaScript
监控和分析 JavaScript 内存使用情况
【10月更文挑战第30天】通过使用上述的浏览器开发者工具、性能分析工具和内存泄漏检测工具,可以有效地监控和分析JavaScript内存使用情况,及时发现和解决内存泄漏、过度内存消耗等问题,从而提高JavaScript应用程序的性能和稳定性。在实际开发中,可以根据具体的需求和场景选择合适的工具和方法来进行内存监控和分析。
|
16天前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
43 1
|
18天前
|
JavaScript
如何使用内存快照分析工具来分析Node.js应用的内存问题?
需要注意的是,不同的内存快照分析工具可能具有不同的功能和操作方式,在使用时需要根据具体工具的说明和特点进行灵活运用。
38 3
|
1月前
|
人工智能 测试技术 API
探索通义灵码的无限可能:功能场景与应用实战分析
本文深入探讨了通义灵码在现代软件开发中的应用价值。通过代码补全、单元测试自动生成等功能,通义灵码显著提升了开发效率和代码质量。文章通过具体案例展示了其在团队协作、代码风格一致性和创新项目中的实用性,并展望了未来开发的新趋势。
85 5
探索通义灵码的无限可能:功能场景与应用实战分析
|
1月前
|
开发框架 监控 .NET
【Azure App Service】部署在App Service上的.NET应用内存消耗不能超过2GB的情况分析
x64 dotnet runtime is not installed on the app service by default. Since we had the app service running in x64, it was proxying the request to a 32 bit dotnet process which was throwing an OutOfMemoryException with requests >100MB. It worked on the IaaS servers because we had the x64 runtime install
|
1月前
|
算法
虚拟内存的页面置换算法有哪些?
【10月更文挑战第25天】不同的页面置换算法各有优缺点,在实际应用中,操作系统会根据不同的应用场景和系统需求选择合适的页面置换算法,或者对算法进行适当的改进和优化,以平衡系统的性能、开销和资源利用率等因素。
54 5
|
1月前
|
Web App开发 JavaScript 前端开发
使用 Chrome 浏览器的内存分析工具来检测 JavaScript 中的内存泄漏
【10月更文挑战第25天】利用 Chrome 浏览器的内存分析工具,可以较为准确地检测 JavaScript 中的内存泄漏问题,并帮助我们找出潜在的泄漏点,以便采取相应的解决措施。
208 9
|
22天前
|
缓存 Prometheus 监控
Elasticsearch集群JVM调优设置合适的堆内存大小
Elasticsearch集群JVM调优设置合适的堆内存大小
173 1
|
11天前
|
存储 监控 算法
深入探索Java虚拟机(JVM)的内存管理机制
本文旨在为读者提供对Java虚拟机(JVM)内存管理机制的深入理解。通过详细解析JVM的内存结构、垃圾回收算法以及性能优化策略,本文不仅揭示了Java程序高效运行背后的原理,还为开发者提供了优化应用程序性能的实用技巧。不同于常规摘要仅概述文章大意,本文摘要将简要介绍JVM内存管理的关键点,为读者提供一个清晰的学习路线图。
|
20天前
|
Java
JVM内存参数
-Xmx[]:堆空间最大内存 -Xms[]:堆空间最小内存,一般设置成跟堆空间最大内存一样的 -Xmn[]:新生代的最大内存 -xx[use 垃圾回收器名称]:指定垃圾回收器 -xss:设置单个线程栈大小 一般设堆空间为最大可用物理地址的百分之80