计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-09-25(上)

简介: 计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-09-25(上)

计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-09-25

1. PromSec: Prompt Optimization for Secure Generation of Functional Source Code with Large Language Models (LLMs)

M Nazzal, I Khalil, A Khreishah, NH Phan - arXiv preprint arXiv:2409.12699, 2024

https://arxiv.org/pdf/2409.12699

PromSec: 使用大型语言模型(LLMs)生成功能源代码的提示优化以确保安全

摘要

本文介绍了一种名为 PromSec 的算法,它针对大型语言模型(LLMs)在生成源代码时存在的安全漏洞问题,提出了一种提示优化方法。LLMs 能够生成高质量的源代码,但它们在训练过程中也可能会复制不安全的编程实践,导致生成的代码存在安全漏洞。PromSec 结合了生成对抗图神经网络(gGAN)和 LLM 代码生成,通过迭代循环优化提示,以生成既安全又功能完备的代码。该算法通过新的对比学习方法训练 gGAN,将代码清理和生成循环构建为一个双目标优化问题,显著减少了 LLM 推理的次数,提高了成本效益。实验结果表明,PromSec 能有效提升代码安全性,同时保持其预期功能。

创新点

  1. 双目标优化:将代码安全性和功能保持作为两个优化目标。
  2. 生成对抗图神经网络(gGAN):用于修复和减少生成代码中的安全漏洞。
  3. 对比学习方法:在 gGAN 中引入新的对比学习方法,优化代码生成过程。
  4. 迭代交互循环:通过 LLM 和 gGAN 之间的迭代交互,逐步优化代码生成。
  5. 跨模型和语言的可转移性:优化后的提示可跨不同的 LLMs 和编程语言使用。

算法模型

PromSec 算法包括以下关键组件:

  • gGAN:一个生成对抗网络,用于在保持代码功能的同时修复安全漏洞。
  • LLM:用于生成代码的大规模语言模型。
  • 对比损失函数:用于训练 gGAN,确保生成的代码图既安全又保持功能。
  • 迭代优化过程:通过 LLM 和 gGAN 的迭代交互,不断优化代码和提示。

实验效果

  • 安全性提升:PromSec 显著减少了代码中的常见弱点枚举(CWEs)数量。
  • 功能保持:通过代码图相似性度量,PromSec 生成的代码保持了原始代码的功能。
  • 成本效益:PromSec 减少了 LLM 查询次数和安全分析成本,提高了操作效率。
  • 跨模型和语言的可转移性:PromSec 优化的提示在不同的 LLMs 和编程语言中具有较高的可转移性。

重要数据与结论

  • PromSec 在处理 100 个测试代码库时,能够在 20 次迭代内解决大多数 CWEs。
  • 在与基线方法(BL1 和 BL2)的比较中,PromSec 在安全性、功能保持和成本效益方面均表现更优。
  • PromSec 在处理未在训练集中出现的 CWEs 时,仍能展现出一定的安全性修复能力。

推荐阅读指数

★★★★☆

推荐理由

  • 实用性:PromSec 解决了实际开发中的一个重要问题,即如何在利用 LLMs 生成代码的同时确保代码的安全性。
  • 创新性:该研究提出了一种新颖的方法,通过优化提示来提高代码的安全性,而不是直接修改模型本身。

2. Exploring Large Language Models for Product Attribute Value Identification

K Sabeh, M Kacimi, J Gamper, R Litschko, B Plank - arXiv preprint arXiv:2409.12695, 2024

探索大型语言模型在产品属性值识别中的应用

摘要

产品属性值识别(PAVI)是从产品信息中自动提取属性及其值的任务,这对于产品搜索、推荐和比较等功能至关重要。现有的方法主要依赖于微调预训练的语言模型,如 BART 和 T5,这些方法需要大量的任务特定训练数据,并且在泛化到新属性时存在困难。本文探索了大型语言模型(LLMs),如 LLaMA 和 Mistral,作为 PAVI 的数据高效且鲁棒的替代方案。我们提出了不同的策略:比较零样本设置中的一步和两步基于提示的方法,并利用通过上下文学习示例中的参数和非参数知识。我们还介绍了基于预训练 T5 模型的密集演示检索器,并进行指令微调,以明确训练 LLMs 执行任务特定指令。在两个产品基准数据集上的广泛实验表明,我们的两步方法在零样本设置中显著提高了性能,并且当使用训练数据时,指令微调进一步提高了性能,展示了使用 LLMs 进行 PAVI 的实际好处。

创新点

  1. 零样本学习:探索了 LLMs 在没有任务特定训练数据的情况下执行 PAVI 的能力。
  2. 两步方法:提出了一种分阶段的方法,先识别属性,然后提取相应的值,以提高准确性。
  3. 上下文学习:使用参数和非参数知识源来增强模型性能,包括生成的示例和检索到的示例。
  4. 指令微调:通过明确训练模型执行任务特定指令来提高性能。

算法模型

  • 一步方法:模型直接从输入文本中提取属性-值对。
  • 两步方法:模型首先识别属性,然后提取相应的值。
  • 密集演示检索器:基于预训练的 T5 模型,用于检索与输入数据最相关的示例。
  • 指令微调:对 LLaMA、Mistral 和 OLMo 模型进行微调,以提高 PAVI 任务的性能。

实验效果

  • 零样本结果:两步方法在 AE-110k 和 OA-Mine 数据集上的性能均优于一步方法。
  • 上下文学习:使用检索到的标题和演示可以提高模型性能,尤其是当使用细粒度检索器时。
  • 指令微调:与上下文学习相比,指令微调显著提高了模型性能。

重要数据与结论

  • 在 AE-110k 数据集上,Mistral 模型在两步方法中的 F1 分数为 28.97,而一步方法为 17.20。
  • 在 OA-Mine 数据集上,LLaMA 模型在两步方法中的 F1 分数为 31.64。
  • 指令微调进一步提高了性能,例如在 AE-110k 数据集上,LLaMA 的 F1 分数提高到 81.09。

推荐阅读指数

★★★★☆

推荐理由

  • 实际应用价值:研究探索了在实际电商环境中如何有效地使用 LLMs 进行产品属性值识别,这对于提升用户体验和平台效率具有重要意义。
  • 创新性方法:提出了一种新的两步方法和上下文学习策略,这些方法在零样本学习和任务特定指令下均显示出优异的性能。
  • 广泛的实验验证:在两个不同的产品数据集上进行了广泛的实验,验证了方法的有效性和泛化能力。
  • 开放性:研究使用了开源模型,这使得其他研究者可以复现和在此基础上进一步研究。


计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-09-25(下)+https://developer.aliyun.com/article/1628888

目录
相关文章
|
3月前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
411 55
|
2月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
185 5
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
2天前
|
监控 算法 安全
基于 Python 广度优先搜索算法的监控局域网电脑研究
随着局域网规模扩大,企业对高效监控计算机的需求增加。广度优先搜索(BFS)算法凭借其层次化遍历特性,在Python中可用于实现局域网内的计算机设备信息收集、网络连接状态监测及安全漏洞扫描,确保网络安全与稳定运行。通过合理选择数据结构与算法,BFS显著提升了监控效能,助力企业实现智能化的网络管理。
20 6
|
11天前
|
监控 网络协议 算法
基于问题“如何监控局域网内的电脑”——Node.js 的 ARP 扫描算法实现局域网内计算机监控的技术探究
在网络管理与安全领域,监控局域网内计算机至关重要。本文探讨基于Node.js的ARP扫描算法,通过获取IP和MAC地址实现有效监控。使用`arp`库安装(`npm install arp`)并编写代码,可定期扫描并对比设备列表,判断设备上线和下线状态。此技术适用于企业网络管理和家庭网络安全防护,未来有望进一步提升效率与准确性。
30 8
|
8天前
|
存储 缓存 监控
企业监控软件中 Go 语言哈希表算法的应用研究与分析
在数字化时代,企业监控软件对企业的稳定运营至关重要。哈希表(散列表)作为高效的数据结构,广泛应用于企业监控中,如设备状态管理、数据分类和缓存机制。Go 语言中的 map 实现了哈希表,能快速处理海量监控数据,确保实时准确反映设备状态,提升系统性能,助力企业实现智能化管理。
25 3
|
24天前
|
监控 算法 安全
内网桌面监控软件深度解析:基于 Python 实现的 K-Means 算法研究
内网桌面监控软件通过实时监测员工操作,保障企业信息安全并提升效率。本文深入探讨K-Means聚类算法在该软件中的应用,解析其原理与实现。K-Means通过迭代更新簇中心,将数据划分为K个簇类,适用于行为分析、异常检测、资源优化及安全威胁识别等场景。文中提供了Python代码示例,展示如何实现K-Means算法,并模拟内网监控数据进行聚类分析。
37 10
|
10天前
|
存储 算法 安全
基于 Go 语言的公司内网管理软件哈希表算法深度解析与研究
在数字化办公中,公司内网管理软件通过哈希表算法保障信息安全与高效管理。哈希表基于键值对存储和查找,如用户登录验证、设备信息管理和文件权限控制等场景,Go语言实现的哈希表能快速验证用户信息,提升管理效率,确保网络稳定运行。
23 0
|
2月前
|
机器学习/深度学习 人工智能 算法
Transformer打破三十年数学猜想!Meta研究者用AI给出反例,算法杀手攻克数学难题
《PatternBoost: Constructions in Mathematics with a Little Help from AI》提出了一种结合传统搜索算法和Transformer神经网络的PatternBoost算法,通过局部搜索和全局优化交替进行,成功应用于组合数学问题。该算法在图论中的Ramsey数研究中找到了更小的反例,推翻了一个30年的猜想,展示了AI在数学研究中的巨大潜力,但也面临可解释性和通用性的挑战。论文地址:https://arxiv.org/abs/2411.00566
94 13
|
3月前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
233 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
3月前
|
机器学习/深度学习 人工智能 算法
人工智能平台年度技术趋势
阿里云智能集团研究员林伟在年度技术趋势演讲中,分享了AI平台的五大方面进展。首先,他介绍了大规模语言模型(LLM)训练中的挑战与解决方案,包括高效故障诊断和快速恢复机制。其次,探讨了AI应用和服务的普及化,强调通过优化调度降低成本,使AI真正惠及大众。第三,提出了GreenAI理念,旨在提高AI工程效率,减少能源消耗。第四,讨论了企业级能力,确保数据和模型的安全性,并推出硬件到软件的全面安全方案。最后,介绍了整合多项核心技术的Pai Prime框架,展示了阿里云在自主可控AI核心框架下的整体布局和发展方向。