国网河南电力探索建设能源大数据中心

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

6月12日获悉,为贯彻落实国务院发布的《促进大数据发展行动纲要》精神,响应河南省发改委2月份印发的《河南省大数据产业发展引导目录》指导意见,国网河南省电力公司组织相关单位和专家主动探索能源大数据中心建设,编制了建设方案。

建设方案借鉴国网河南电力全业务统一数据中心建设经验,结合能源行业特殊性质,提出了在政府统一领导和协调下,以电力、煤炭、石油等能源数据为基础,秉承“大规划、重数据、辅决策、促发展”建设理念,坚持“短期见成效、长期建机制”的管理思想,开展能源行业大数据中心建设。同时,积极探索构建能源大数据运营体系,支撑政府行政监督和辅助决策能力,提升能源企业间的协同发展能力。

据建设方案初步设计,能源大数据中心总体框架为“一个基地、两大体系、三大平台、四类服务对象”,即以全省能源大数据基地建设为首要任务,在平台标准和平台保障两大体系的支撑和保障下,建设基础支撑、数据管理和应用服务三大平台,为政府部门、能源企业、非能源企业和居民四类服务对象提供科学的、高价值的能源大数据分析服务。

能源大数据中心建设是河南建立国家综合能源大数据试验区的一项重点工作,涉及能源行业多个企业,是一项复杂的系统工程,技术难度大,创新性强。下一步,国网河南电力将全力推进全业务统一数据中心建设工作,为能源大数据中心建设积累经验,同时积极与其他能源企业加强合作协同,大胆创新,积极探索,为建设能源大数据中心贡献力量。

本文转自d1net(转载)

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
5月前
|
机器学习/深度学习 监控 算法
利用机器学习优化数据中心的能源效率
【2月更文挑战第27天】 在数据中心管理和运营中,能源效率已成为关键性能指标之一。随着人工智能技术的进步,特别是机器学习(ML)算法的发展,出现了新的机会来优化数据中心的能源消耗。本文探讨了如何通过应用机器学习模型对数据中心的能源使用进行实时监控和预测,进而实施节能策略。文中详细分析了不同类型的机器学习算法,并提出了一套基于预测分析的动态能源管理框架。通过仿真实验验证了所提出方法的有效性,结果表明,与传统管理手段相比,该框架能够显著提高数据中心的能源效率,降低运营成本。
96 3
|
5月前
|
机器学习/深度学习 数据挖掘 物联网
【专栏】机器学习如何通过预测性维护、负载预测、动态冷却管理和能源效率优化提升数据中心能效
【4月更文挑战第27天】随着信息技术发展,数据中心能耗问题日益突出,占全球电力消耗一定比例。为提高能效,业界探索利用机器学习进行优化。本文讨论了机器学习如何通过预测性维护、负载预测、动态冷却管理和能源效率优化提升数据中心能效。然而,数据质量、模型解释性和规模化扩展是当前挑战。未来,随着技术进步和物联网发展,数据中心能效管理将更智能自动化,机器学习将在实现绿色高效发展中发挥关键作用。
106 5
|
2月前
|
机器学习/深度学习 存储 算法
利用机器学习优化数据中心的能源效率
【8月更文挑战第30天】 在信息技术不断进步的今天,数据中心作为支撑云计算、大数据分析和人工智能等技术的核心基础设施,其能源效率已成为衡量运营成本和环境可持续性的关键指标。本文旨在探讨如何通过机器学习技术对数据中心进行能源效率优化。首先,文中介绍了数据中心能耗的主要组成部分及其影响因素。其次,详细阐述了机器学习模型在预测和管理数据中心能源消耗方面的应用,并通过案例分析展示了机器学习算法在实际环境中的效果。最后,文章讨论了机器学习优化策略实施的潜在挑战与未来发展方向。
|
5月前
|
机器学习/深度学习 算法 大数据
利用机器学习优化数据中心的能源效率
【5月更文挑战第5天】 在本文中,我们探索了如何通过应用机器学习技术来改善数据中心的能源效率。传统的数据中心能源管理依赖于静态阈值和规则,这限制了它们在动态环境中优化能效的能力。我们提出了一个基于机器学习的框架,该框架能够实时分析数据中心的能耗模式,并自动调整资源分配以降低功耗。我们的方法结合了历史数据学习和实时预测模型,以实现更精细化的能源管理策略。实验结果表明,我们的机器学习模型相比传统方法在能源节约方面取得了显著的提升。
|
5月前
|
机器学习/深度学习 算法 数据处理
利用机器学习优化数据中心的能源效率
【5月更文挑战第20天】 在数据中心管理和运营中,能源效率的优化是降低运营成本和减少环境影响的关键因素。随着人工智能技术的进步,特别是机器学习(ML)的发展,出现了新的机会来提高数据中心的能效。本文将探讨如何通过应用机器学习算法对数据中心的能源消耗进行建模、预测和实时管理,以实现更高的能源节省。我们将分析不同ML模型在处理大规模数据集时的性能,并讨论实施过程中的挑战与潜在解决方案。
52 0
|
5月前
|
机器学习/深度学习 监控 算法
利用机器学习优化数据中心的能源效率
【2月更文挑战第27天】 在数据中心管理和运营的众多挑战中,能源效率优化是一项持续的关键课题。随着人工智能技术的不断进步,特别是机器学习(ML)方法的应用,为精确预测和动态调整数据中心的能源消耗提供了新的可能性。本文将探讨如何通过机器学习模型来分析历史能耗数据,实现对冷却系统、服务器利用率和其他关键因素的智能调控,从而达到降低整体能耗的目的。我们还将讨论这些技术实施过程中可能遇到的挑战以及潜在的解决方案。
|
5月前
|
机器学习/深度学习 监控 算法
利用机器学习优化数据中心的能源效率
【2月更文挑战第19天】 在本文中,我们将探讨如何通过应用机器学习技术来优化数据中心的能源效率。随着云计算和大数据的迅猛发展,数据中心作为其基础设施的核心,其能源消耗问题日益凸显。传统的能源管理方法已难以应对持续增长的能耗挑战。因此,我们提出了一种基于机器学习的方法,能够实时监控并调整数据中心的运行状态,以达到节能减排的目的。该方法包括数据收集、特征工程、模型训练及部署等步骤,并在真实环境中进行了测试验证。实验结果表明,采用机器学习优化策略后,数据中心的PUE(Power Usage Effectiveness)得到显著改善,能源利用效率提升。
|
5月前
|
机器学习/深度学习 监控 算法
利用机器学习优化数据中心的能源效率
【2月更文挑战第16天】 在本文中,我们探讨了如何应用机器学习技术来优化数据中心的能源效率。数据中心作为现代信息技术的基础设施,其能源消耗一直是业界关注的焦点。通过机器学习算法,我们可以实现智能调度和资源管理,从而减少能源浪费,提升整体运行效率。文中首先介绍了数据中心能耗的主要来源,随后详细阐述了机器学习在此领域的应用方法,包括预测模型建立、智能控制系统设计以及自适应算法的开发。最后,文章通过案例分析展示了机器学习在提升数据中心能源效率方面的实际成效,并讨论了未来可能的发展方向。
|
5月前
|
数据采集 数据管理 大数据
【电力大数据】浅谈电力行业元数据管理
【电力大数据】浅谈电力行业元数据管理
216 0
|
人工智能 运维 监控
数据中心能源未来之路:一切过往,皆为序章
数据中心能源未来之路:一切过往,皆为序章

热门文章

最新文章