C++之stack 和 queue(下)

简介: C++之stack 和 queue(下)

C++之stack 和 queue(上):https://developer.aliyun.com/article/1624999


3.适配器

3.1 什么是适配器

适配器是一种设计模式(设计模式是一套被反复使用的、多数人知晓的、经过分类编目的、代码设 计经验的总结),该种模式是将一个类的接口转换成客户希望的另外一个接口。

3.2 STL标准库中stack和queue的底层结构

虽然stack和queue中也可以存放元素,但在STL中并没有将其划分在容器的行列,而是将其称为 容器适配器,这是因为stack和队列只是对其他容器的接口进行了包装,STL中stack和queue默认 使用deque,比如:

3.3 deque 的介绍(了解)

3.3.1 deque的原理

deque(双端队列):是一种双开口的"连续"空间的数据结构,双开口的含义是:可以在头尾两端 进行插入和删除操作,且时间复杂度为O(1),与vector比较,头插效率高,不需要搬移元素;与 list比较,空间利用率比较高。

deque并不是真正连续的空间,而是由一段段连续的小空间拼接而成的,实际deque类似于一个 动态的二维数组,其底层结构如下图所示:

双端队列底层是一段假象的连续空间,实际是分段连续的,为了维护其“整体连续”以及随机访问 的假象,落在了deque的迭代器身上,因此deque的迭代器设计就比较复杂,如下图所示:

那deque是如何借助其迭代器维护其假想连续的结构呢? 如下图所示

3.3.2 deque 的缺陷

与vector比较,deque的优势是:头部插入和删除时,不需要搬移元素,效率特别高,而且在扩 容时,也不需要搬移大量的元素,因此其效率是必vector高的。

与list比较,其底层是连续空间,空间利用率比较高,不需要存储额外字段。

但是,deque不适合遍历,因为在遍历时,deque的迭代器要频繁的去检测其 是否移动到某段小空间的边界,导致效率低下,而序列式场景中,可能需要经常遍历,因此在实 际中,需要线性结构时,大多数情况下优先考虑vector和list,deque的应用并不多,

而目前能看到的一个应用就是,STL用其作为stack和queue的底层数据结构

为什么选择deque作为stack和queue的底层默认容器

stack是一种后进先出的特殊线性数据结构,因此只要具有push_back()和pop_back()操作的线性 结构,都可以作为stack的底层容器,比如vector和list都可以;

queue是先进先出的特殊线性数据 结构,只要具有push_back和pop_front操作的线性结构,都可以作为queue的底层容器,比如 list。

但是STL中对stack和queue默认选择deque作为其底层容器,主要是因为:

1. stack和queue不需要遍历(因此stack和queue没有迭代器),只需要在固定的一端或者两端进 行操作。

2. 在stack中元素增长时,deque比vector的效率高(扩容时不需要搬移大量数据);queue中的 元素增长时,deque不仅效率高,而且内存使用率高。

3.4 STL标准库中对于stack和queue的模拟实现

3.4.1 stack 的模拟

#include<deque>
namespace my_stack
{
  template<class T, class Con = deque<T>>
  //template<class T, class Con = vector<T>>
  //template<class T, class Con = list<T>>
  class stack
  {
  public:
    stack() {}
    void push(const T& x){ 
      _c.push_back(x); }
    void pop() { 
      _c.pop_back(); }
    T& top() { 
      return _c.back(); }
    const T& top()const { 
      return _c.back(); }
    size_t size()const { 
      return _c.size(); }
    bool empty()const { 
      return _c.empty(); }
  private:
    Con _c;
  };
}

3.4.2 queue 的模拟

#include<deque>
#include <list>
namespace my_queue
{
  template<class T, class Con = deque<T>>
  //template<class T, class Con = list<T>>
  class queue
  {
  public:
    queue() {}
    void push(const T& x) {
      _c.push_back(x); }
    void pop() {
      _c.pop_front(); }
    T& back() { 
      return _c.back(); }
    const T& back()const { 
      return _c.back(); }
    T& front() { 
      return _c.front(); }
    const T& front()const { 
      return _c.front(); }
    size_t size()const { 
      return _c.size(); }
    bool empty()const { 
      return _c.empty(); }
  private:
    Con _c;
  };
}

测试代码参考

#define _CRT_SECURE_NO_WARNINGS
#include <iostream>
#include <stack>
#include <queue>
using namespace std;
#include "stack.h"
#include "queue.h"
void print() {
}
void test_stack() {
  stack<int>s1;
  s1.push(1);
  s1.push(2);
  s1.push(3);
  s1.push(4);
  s1.push(5);
  cout << s1.size() << endl;
  cout << s1.top() << endl;
  s1.pop();
  cout << s1.top() << endl;
}
void test_queue() {
  queue<int>q1;
  q1.push(1);
  q1.push(2);
  q1.push(3);
  q1.push(4);
  q1.push(5);
  cout << q1.size() << endl;
  cout << q1.front() << endl;
  cout << q1.back() << endl;
  q1.pop();
  cout << q1.front() << endl;
}
int main() {
  //test_stack();
  //test_queue();
  /*
  my_stack::stack<int,list<int>>s1;
  s1.push(1);
  s1.push(2);
  s1.push(3);
  s1.push(4);
  s1.push(5);
  cout << s1.size() << endl;
  cout << s1.top() << endl;
  s1.pop();
  cout << s1.top() << endl;
  cout << s1.back() << endl;
  cout << s1.front() << endl;
  */
  
  my_queue::queue<int> q1;
  q1.push(1);
  q1.push(2);
  q1.push(3);
  q1.push(520);
  q1.push(1314);
  cout << q1.back() << endl;
  cout << q1.front() << endl;
  q1.pop();
  cout << q1.back() << endl;
  cout << q1.front() << endl;
  
     my_stack::stack<int> q2;
  q2.push(1);
  q2.push(2);
  q2.push(3);
  q2.push(520);
  q2.push(1314);
  cout << q2.top() << endl;
  cout << q2.top()<< endl;
  q2.pop();
  cout << q2.top() << endl;
  const my_stack::stack<int>& crefMyStack = q2;
  cout << "Top element (const) is: " << crefMyStack.top() << endl;
  return 0;
}

结束语

本次博客内容就到此结束了。理所当然C++下的stack和queue的实现更加的简便和多种多样!

最后感谢各位友友们的捧场和支持,给小编留个赞吧!!!

目录
相关文章
|
2月前
|
存储 算法 调度
【C++打怪之路Lv11】-- stack、queue和优先级队列
【C++打怪之路Lv11】-- stack、queue和优先级队列
40 1
|
2月前
|
存储 算法 C语言
【C++】C++ STL探索:Priority Queue与仿函数的深入解析(一)
【C++】C++ STL探索:Priority Queue与仿函数的深入解析
|
2月前
|
C++ 容器
C++之stack 和 queue(上)
C++之stack 和 queue(上)
62 0
|
2月前
|
存储 C++ 容器
C++番外篇——stack、queue的实现及deque的介绍
C++番外篇——stack、queue的实现及deque的介绍
28 0
|
2月前
|
存储 算法 C++
C++入门10——stack与queue的使用
C++入门10——stack与queue的使用
46 0
|
2月前
|
C++
【C++】C++ STL探索:Priority Queue与仿函数的深入解析(三)
【C++】C++ STL探索:Priority Queue与仿函数的深入解析
|
2月前
|
编译器 程序员 C++
【C++】C++ STL探索:Priority Queue与仿函数的深入解析(二)
【C++】C++ STL探索:Priority Queue与仿函数的深入解析
|
23天前
|
存储 编译器 C语言
【c++丨STL】string类的使用
本文介绍了C++中`string`类的基本概念及其主要接口。`string`类在C++标准库中扮演着重要角色,它提供了比C语言中字符串处理函数更丰富、安全和便捷的功能。文章详细讲解了`string`类的构造函数、赋值运算符、容量管理接口、元素访问及遍历方法、字符串修改操作、字符串运算接口、常量成员和非成员函数等内容。通过实例演示了如何使用这些接口进行字符串的创建、修改、查找和比较等操作,帮助读者更好地理解和掌握`string`类的应用。
36 2
|
29天前
|
存储 编译器 C++
【c++】类和对象(下)(取地址运算符重载、深究构造函数、类型转换、static修饰成员、友元、内部类、匿名对象)
本文介绍了C++中类和对象的高级特性,包括取地址运算符重载、构造函数的初始化列表、类型转换、static修饰成员、友元、内部类及匿名对象等内容。文章详细解释了每个概念的使用方法和注意事项,帮助读者深入了解C++面向对象编程的核心机制。
82 5
|
1月前
|
存储 编译器 C++
【c++】类和对象(中)(构造函数、析构函数、拷贝构造、赋值重载)
本文深入探讨了C++类的默认成员函数,包括构造函数、析构函数、拷贝构造函数和赋值重载。构造函数用于对象的初始化,析构函数用于对象销毁时的资源清理,拷贝构造函数用于对象的拷贝,赋值重载用于已存在对象的赋值。文章详细介绍了每个函数的特点、使用方法及注意事项,并提供了代码示例。这些默认成员函数确保了资源的正确管理和对象状态的维护。
79 4