零基础入门金融风控Task5 模型融合

简介: 零基础入门金融风控Task5 模型融合

1 学习目标

将之前建模调参的结果进行模型融合。 尝试多种融合方案。

2 内容介绍

模型融合是比赛后期上分的重要手段,在多人组队的比赛中,将不同的模型进行融合,可能会收获意想不到的效果,往往模型相差越大且模型表现都不错的前提下,模型融合后结果会有大幅提升,模型融合的方式有。

  • 平均法:
    ---------简单平均法
    ---------加权平均法
  • 投票法:
    ---------简单投票法
    ---------加权投票法
  • 综合法:
    ---------排序融合
    ---------log融合
  • stacking:
    ---------构建多层模型,并利用预测结果再拟合预测。
  • blending:
    ---------选取部分数据预测训练得到预测结果作为新特征,带入剩下的数据中
  • 预测。
    ---------boosting/bagging

3 stacking和blending详解

stacking 将若干基学习器获得的预测结果,将预测结果作为新的训练集来训练一个学习器。假设有五个基学习器,将数据带入五基学习器中得到预测结果,再带入模型六中进行训练预测。但是由于直接由五个基学习器获得结果直接带入模型六中,容易导致过拟合。所以在使用五个及模型进行预测的时候,可以考虑使用K折验证,防止过拟合。

  • Blending与stacking的不同
    stacking中由于两层使用的数据不同,所以可以避免信息泄露的问题。在组队竞赛的过程中,不需要给队友分享自己的随机种子。
  • Blending
    由于blending对将数据划分为两个部分,在最后预测时有部分数据信息将被忽略。同时在使用第二层数据时可能会因为第二层数据较少产生过拟合现象。

4 代码

4.1 平均法:
  • 简单加权平均
    结果直接求和,然后除长,得到预测结果的平均值。
  • 加权平均法
    一般根据之前预测模型的准确率,进行加权融合,将准确性高的模型赋予更高的权重。给每一个值加一个加权值,进行平均化。
4.2 投票法
  • 简单投票
from xgboost import XGBClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier, VotingClassifier
clf1 = LogisticRegression(random_state=1)
clf2 = RandomForestClassifier(random_state=1)
clf3 = XGBClassifier(learning_rate=0.1, n_estimators=150, max_depth=4, min_child_weight=2, subsample=0.7,objective='binary:logistic')
 
vclf = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2), ('xgb', clf3)])
vclf = vclf .fit(x_train,y_train)
print(vclf .predict(x_test))
  • 加权投票
    在VotingClassifier中加入参数 voting=‘soft’, weights=[2, 1, 1],weights用于调节基模型的权重
from xgboost import XGBClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier, VotingClassifier
clf1 = LogisticRegression(random_state=1)
clf2 = RandomForestClassifier(random_state=1)
clf3 = XGBClassifier(learning_rate=0.1, n_estimators=150, max_depth=4, min_child_weight=2, subsample=0.7,objective='binary:logistic')
 
vclf = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2), ('xgb', clf3)], voting='soft', weights=[2, 1, 1])
vclf = vclf .fit(x_train,y_train)
print(vclf .predict(x_test))
4.3 Stacking:
import warnings
warnings.filterwarnings('ignore')
%matplotlib inline
import itertools
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
from sklearn import datasets
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import GaussianNB 
from sklearn.ensemble import RandomForestClassifier
from mlxtend.classifier import StackingClassifier
from sklearn.model_selection import cross_val_score, train_test_split
from mlxtend.plotting import plot_learning_curves
from mlxtend.plotting import plot_decision_regions
# 以python自带的鸢尾花数据集为例
iris = datasets.load_iris()
X, y = iris.data[:, 1:3], iris.target
clf1 = KNeighborsClassifier(n_neighbors=1)
clf2 = RandomForestClassifier(random_state=1)
clf3 = GaussianNB()
lr = LogisticRegression()
sclf = StackingClassifier(classifiers=[clf1, clf2, clf3], 
                          meta_classifier=lr)
label = ['KNN', 'Random Forest', 'Naive Bayes', 'Stacking Classifier']
clf_list = [clf1, clf2, clf3, sclf]
    
fig = plt.figure(figsize=(10,8))
gs = gridspec.GridSpec(2, 2)
grid = itertools.product([0,1],repeat=2)
clf_cv_mean = []
clf_cv_std = []
for clf, label, grd in zip(clf_list, label, grid):
        
    scores = cross_val_score(clf, X, y, cv=5, scoring='accuracy')
    print("Accuracy: %.2f (+/- %.2f) [%s]" %(scores.mean(), scores.std(), label))
    clf_cv_mean.append(scores.mean())
    clf_cv_std.append(scores.std())
        
    clf.fit(X, y)
    ax = plt.subplot(gs[grd[0], grd[1]])
    fig = plot_decision_regions(X=X, y=y, clf=clf)
    plt.title(label)
 
plt.show()

Accuracy: 0.91 (+/- 0.07) [KNN]

Accuracy: 0.93 (+/- 0.05) [Random Forest]

Accuracy: 0.91 (+/- 0.04) [Naive Bayes]

Accuracy: 0.93 (+/- 0.04) [Stacking Classifier]

4.2 blending
# 以python自带的鸢尾花数据集为例
data_0 = iris.data
data = data_0[:100,:]
target_0 = iris.target
target = target_0[:100]
 
#模型融合中基学习器
clfs = [LogisticRegression(),
        RandomForestClassifier(),
        ExtraTreesClassifier(),
        GradientBoostingClassifier()]
 
#切分一部分数据作为测试集
X, X_predict, y, y_predict = train_test_split(data, target, test_size=0.3, random_state=914)
#切分训练数据集为d1,d2两部分
X_d1, X_d2, y_d1, y_d2 = train_test_split(X, y, test_size=0.5, random_state=914)
dataset_d1 = np.zeros((X_d2.shape[0], len(clfs)))
dataset_d2 = np.zeros((X_predict.shape[0], len(clfs)))
 
for j, clf in enumerate(clfs):
    #依次训练各个单模型
    clf.fit(X_d1, y_d1)
    y_submission = clf.predict_proba(X_d2)[:, 1]
    dataset_d1[:, j] = y_submission
    #对于测试集,直接用这k个模型的预测值作为新的特征。
    dataset_d2[:, j] = clf.predict_proba(X_predict)[:, 1]
    print("val auc Score: %f" % roc_auc_score(y_predict, dataset_d2[:, j]))
#融合使用的模型
clf = GradientBoostingClassifier()
clf.fit(dataset_d1, y_d2)
y_submission = clf.predict_proba(dataset_d2)[:, 1]
print("Val auc Score of Blending: %f" % (roc_auc_score(y_predict, y_submission)))

5 总结学习

  • 简单平均和加权平均是常用的两种比赛中模型融合的方式。其优点是快速、简单。
  • stacking在众多比赛中大杀四方,但是跑过代码的小伙伴想必能感受到速度之慢,同时stacking多层提升幅度并不能抵消其带来的时间和内存消耗,所以实际环境中应用还是有一定的难度,同时在有答辩环节的比赛中,主办方也会一定程度上考虑模型的复杂程度,所以说并不是模型融合的层数越多越好的。
  • 当然在比赛中将加权平均、stacking、blending等混用也是一种策略,可能会收获意想不到的效果哦!
  • 最后模型的融合在本次学习中,介绍了几种融合方法,使用融合可以很好的提高准确率这也是我们提高成绩的一大法宝。另外文章中有不足之处,请务必指出,一定迅速改正。谢谢
  • 五次打卡已经结束,最后还有一篇基线学习,感谢支持。
相关文章
|
2月前
|
人工智能 分布式计算 架构师
大数据及AI典型场景实践问题之基于MaxCompute构建Noxmobi全球化精准营销系统如何解决
大数据及AI典型场景实践问题之基于MaxCompute构建Noxmobi全球化精准营销系统如何解决
|
5月前
大模型与其他业务系统打通是大模型产业落地的关键
【1月更文挑战第9天】大模型与其他业务系统打通是大模型产业落地的关键
140 3
大模型与其他业务系统打通是大模型产业落地的关键
|
5月前
|
传感器 供应链 数据可视化
智慧物流大数据的设计与实现(论文+源码)_kaic
智慧物流大数据的设计与实现(论文+源码)_kaic
|
5月前
|
数据采集 SQL Oracle
助力工业物联网,工业大数据之DWD层构建:数据抽取分析【十一】
助力工业物联网,工业大数据之DWD层构建:数据抽取分析【十一】
87 0
|
人工智能 自然语言处理 达摩院
带你读《达摩院智能客服知识运营白皮书》——4.1 分析知识源数据,完成知识分类
带你读《达摩院智能客服知识运营白皮书》——4.1 分析知识源数据,完成知识分类
103 0
带你读《达摩院智能客服知识运营白皮书》——4.1 分析知识源数据,完成知识分类
|
人工智能 城市大脑
阿里云产品体系分为6大分类——人工智能——分为10种模块——城市大脑开放平台
阿里云产品体系分为6大分类——人工智能——分为10种模块——城市大脑开放平台自制脑图
304 1
|
机器学习/深度学习 人工智能
阿里云产品体系分为6大分类——人工智能——分为10种模块——机器学习平台
阿里云产品体系分为6大分类——人工智能——分为10种模块——机器学习平台自制脑图
218 1
|
大数据
阿里云产品体系分为6大分类——大数据——大数据的5种模块——数据开发
阿里云产品体系分为6大分类——大数据——大数据的5种模块——数据开发自制脑图
192 1
|
大数据
阿里云产品体系分为6大分类——大数据——大数据的5种模块
阿里云产品体系分为6大分类——大数据——大数据的5种模块自制脑图
226 1
|
大数据
阿里云产品体系分为6大分类——大数据——大数据的5种模块——大数据搜索与分析
阿里云产品体系分为6大分类——大数据——大数据的5种模块——大数据搜索与分析自制脑图
294 1