大数据-58 Kafka 高级特性 消息发送02-自定义序列化器、自定义分区器 Java代码实现

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 大数据-58 Kafka 高级特性 消息发送02-自定义序列化器、自定义分区器 Java代码实现

点一下关注吧!!!非常感谢!!持续更新!!!

目前已经更新到了:

Hadoop(已更完)

HDFS(已更完)

MapReduce(已更完)

Hive(已更完)

Flume(已更完)

Sqoop(已更完)

Zookeeper(已更完)

HBase(已更完)

Redis (已更完)

Kafka(正在更新…)

章节内容

上节我们完成了如下的内容:


消费者的基本流程

消费者的参数、参数补充

Kafka 消息发送(Message Production)

在 Kafka 中,消息发送是指生产者将数据写入 Kafka 主题的过程。生产者是负责创建和发送消息的客户端应用,它们将数据转换为 Kafka 可识别的格式并发送到指定的主题中。


消息发送的过程

消息创建:生产者创建消息,包括主题名称、键(可选)、消息体等。键用于控制消息的分区,而消息体是实际的业务数据。

序列化:在消息发送之前,生产者需要将消息键和消息体序列化为字节数组,Kafka 只能处理字节数组格式的数据。

选择分区:消息被序列化后,生产者根据某种逻辑(如默认的哈希算法或自定义逻辑)将消息分配到某个特定的分区。

发送消息:消息被发送到 Kafka 集群的指定分区。Kafka 的 Broker 接收到消息后,会将其写入相应分区的日志文件中。

发送消息的配置参数

acks:定义生产者需要等待多少个副本确认消息已经收到,才认为消息发送成功。常见的值包括 0(不等待)、1(等待 Leader 确认)、all(等待所有副本确认)。

retries:当消息发送失败时,生产者重试的次数。

batch.size:生产者在发送消息前积累的消息批次大小。批次越大,吞吐量越高,但也会增加延迟。

自定义序列化器(Custom Serializer)

在 Kafka 中,生产者发送的消息需要先经过序列化处理。Kafka 提供了默认的序列化器(如 StringSerializer、ByteArraySerializer 等),但在某些情况下,可能需要自定义序列化器以支持特定的数据格式或优化性能。


什么是序列化器

序列化器的作用:序列化器将生产者的消息对象(如字符串、Java 对象等)转换为字节数组,以便 Kafka 能够存储和传输数据。

Kafka 的默认序列化器:Kafka 提供了多种默认序列化器来处理常见的数据类型,如字符串、整数和字节数组。

自定义序列化器的场景

复杂数据结构:当你的消息是复杂的对象结构(如嵌套的 JSON 对象、ProtoBuf 等),默认的序列化器可能无法满足需求。这时可以编写自定义序列化器,来处理这些复杂的结构。

性能优化:在一些高性能场景下,默认的序列化器可能无法满足低延迟、高吞吐量的需求。通过定制化的序列化器,可以优化序列化过程的效率。

自定义分区器(Custom Partitioner)

在 Kafka 中,分区器决定了消息被发送到哪个分区。Kafka 提供了默认的分区器(通常基于消息的键进行哈希计算),但在一些场景下,你可能希望自定义分区逻辑,以实现特定的消息分布策略。


分区器的作用

控制消息的分区:分区器的主要作用是根据消息的键或其他属性来确定消息应该发送到哪个分区。默认情况下,Kafka 使用键的哈希值来确定分区。

分区的意义:通过合理分配分区,可以实现消息的负载均衡、提高系统的并行处理能力,并确保相同键的消息总是被发送到同一个分区。

自定义分区器的场景

定制化的消息分布:在某些场景下,可能需要根据业务逻辑将消息定向到特定的分区。例如,按照用户 ID 分区、按照消息类型分区等。

特殊的分区需求:某些情况下,你可能希望确保某些分区具有更高的优先级或更大的存储能力,这时可以使用自定义分区器来实现这些需求。

序列化器

由于Kafka中的数据都是字节数组,在将消息发送到Kafka之前需要将数据序列化成为字节数组。

序列化器作用就是用于序列化要发送的消息的。

Kafka通过 org.apache.kafka.common.serialization.Serializer 接口用于定义序列化器,将泛型指定类型的数据转换为字节数据。

public interface Serializer<T> extends Closeable {

    /**
     * Configure this class.
     * @param configs configs in key/value pairs
     * @param isKey whether is for key or value
     */
    default void configure(Map<String, ?> configs, boolean isKey) {
        // intentionally left blank
    }

    /**
     * Convert {@code data} into a byte array.
     *
     * @param topic topic associated with data
     * @param data typed data
     * @return serialized bytes
     */
    byte[] serialize(String topic, T data);

    /**
     * Convert {@code data} into a byte array.
     *
     * @param topic topic associated with data
     * @param headers headers associated with the record
     * @param data typed data
     * @return serialized bytes
     */
    default byte[] serialize(String topic, Headers headers, T data) {
        return serialize(topic, data);
    }

    /**
     * Close this serializer.
     * <p>
     * This method must be idempotent as it may be called multiple times.
     */
    @Override
    default void close() {
        // intentionally left blank
    }
}

其中Kafka也内置了一些实现好的序列化器:

  • ByteArraySerializer
  • StringSerializer
  • DoubleSerializer
  • 等等… 具体可以自行查看

自定义序列化器

自定义实体类

实现一个简单的类:

public class User {

    private String username;

    private String password;

    private Integer age;

    public String getUsername() {
        return username;
    }

    public void setUsername(String username) {
        this.username = username;
    }

    public String getPassword() {
        return password;
    }

    public void setPassword(String password) {
        this.password = password;
    }

    public Integer getAge() {
        return age;
    }

    public void setAge(Integer age) {
        this.age = age;
    }
}

实现序列化

注意对象中的内容转换为字节数组的过程,要计算好开启的空间!!!

public class UserSerilazer implements Serializer<User> {

    @Override
    public void configure(Map<String, ?> configs, boolean isKey) {
        Serializer.super.configure(configs, isKey);
    }

    @Override
    public byte[] serialize(String topic, User data) {
        if (null == data) {
            return null;
        }
        int userId = data.getUserId();
        String username = data.getUsername();
        String password = data.getPassword();
        int age = data.getAge();

        int usernameLen = 0;
        byte[] usernameBytes;
        if (null != username) {
            usernameBytes = username.getBytes(StandardCharsets.UTF_8);
            usernameLen = usernameBytes.length;
        } else {
            usernameBytes = new byte[0];

        }

        int passwordLen = 0;
        byte[] passwordBytes;
        if (null != password) {
            passwordBytes = password.getBytes(StandardCharsets.UTF_8);
            passwordLen = passwordBytes.length;
        } else {
            passwordBytes = new byte[0];
        }

        ByteBuffer byteBuffer = ByteBuffer.allocate(4 + 4 + usernameLen + 4 + passwordLen + 4);
        byteBuffer.putInt(userId);
        byteBuffer.putInt(usernameLen);
        byteBuffer.put(usernameBytes);
        byteBuffer.putInt(passwordLen);
        byteBuffer.put(passwordBytes);
        byteBuffer.putInt(age);
        return byteBuffer.array();
    }

    @Override
    public byte[] serialize(String topic, Headers headers, User data) {
        return Serializer.super.serialize(topic, headers, data);
    }

    @Override
    public void close() {
        Serializer.super.close();
    }
}

分区器

默认情况下的分区计算:

  • 如果Record提供了分区号,则使用Record提供的分区号
  • 如果Record没有提供分区号,则使用Key序列化后值的Hash值对分区数取模
  • 如果Record没有提供分区号,也没有提供Key,则使用轮询的方式分配分区号

我们在这里可以看到对应的内容:

org.apache.kafka.clients.producer

可以看到,如果 Partition 是 null的话,会有函数来进行分区,跟进去,可以看到如下方法:

自定义分区器

如果要自定义分区器, 需要:

  • 首先开发Partitioner接口中的实现类
  • 在KafkaProducer中进行设置:configs.put(“partitioner.class”, “xxx.xxx.xxx.class”)
public class MyPartitioner implements Partitioner {

    @Override
    public int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster) {
        return 0;
    }

    @Override
    public void close() {

    }

    @Override
    public void configure(Map<String, ?> configs) {

    }
}
目录
相关文章
|
1月前
|
负载均衡 算法 关系型数据库
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
本文聚焦 MySQL 集群架构中的负载均衡算法,阐述其重要性。详细介绍轮询、加权轮询、最少连接、加权最少连接、随机、源地址哈希等常用算法,分析各自优缺点及适用场景。并提供 Java 语言代码实现示例,助力直观理解。文章结构清晰,语言通俗易懂,对理解和应用负载均衡算法具有实用价值和参考价值。
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
|
2月前
|
前端开发 Java
java实现队列数据结构代码详解
本文详细解析了Java中队列数据结构的实现,包括队列的基本概念、应用场景及代码实现。队列是一种遵循“先进先出”原则的线性结构,支持在队尾插入和队头删除操作。文章介绍了顺序队列与链式队列,并重点分析了循环队列的实现方式以解决溢出问题。通过具体代码示例(如`enqueue`入队和`dequeue`出队),展示了队列的操作逻辑,帮助读者深入理解其工作机制。
|
17天前
|
人工智能 前端开发 Java
Java 面试资料中相关代码使用方法与组件封装方法解析
这是一份详尽的Java面试资料代码指南,涵盖使用方法与组件封装技巧。内容包括环境准备(JDK 8+、Maven/Gradle)、核心类示例(问题管理、学习进度跟踪)、Web应用部署(Spring Boot、前端框架)、单元测试及API封装。通过问题库管理、数据访问组件、学习进度服务和REST接口等模块化设计,帮助开发者高效组织与复用功能,同时支持扩展如用户认证、AI推荐等功能。适用于Java核心技术学习与面试备考,提升编程与设计能力。资源链接:[点此下载](https://pan.quark.cn/s/14fcf913bae6)。
48 6
Java 面试资料中相关代码使用方法与组件封装方法解析
|
3月前
|
消息中间件 Java 应用服务中间件
JVM实战—1.Java代码的运行原理
本文介绍了Java代码的运行机制、JVM类加载机制、JVM内存区域及其作用、垃圾回收机制,并汇总了一些常见问题。
JVM实战—1.Java代码的运行原理
|
5月前
|
消息中间件 存储 缓存
kafka 的数据是放在磁盘上还是内存上,为什么速度会快?
Kafka的数据存储机制通过将数据同时写入磁盘和内存,确保高吞吐量与持久性。其日志文件按主题和分区组织,使用预写日志(WAL)保证数据持久性,并借助操作系统的页缓存加速读取。Kafka采用顺序I/O、零拷贝技术和批量处理优化性能,支持分区分段以实现并行处理。示例代码展示了如何使用KafkaProducer发送消息。
|
8月前
|
消息中间件 存储 运维
为什么说Kafka还不是完美的实时数据通道
【10月更文挑战第19天】Kafka 虽然作为数据通道被广泛应用,但在实时性、数据一致性、性能及管理方面存在局限。数据延迟受消息堆积和分区再平衡影响;数据一致性难以达到恰好一次;性能瓶颈在于网络和磁盘I/O;管理复杂性涉及集群配置与版本升级。
299 1
|
8月前
|
消息中间件 Java Kafka
Flink-04 Flink Java 3分钟上手 FlinkKafkaConsumer消费Kafka数据 进行计算SingleOutputStreamOperatorDataStreamSource
Flink-04 Flink Java 3分钟上手 FlinkKafkaConsumer消费Kafka数据 进行计算SingleOutputStreamOperatorDataStreamSource
184 1
|
10月前
|
消息中间件 Java Kafka
Kafka不重复消费的终极秘籍!解锁幂等性、偏移量、去重神器,让你的数据流稳如老狗,告别数据混乱时代!
【8月更文挑战第24天】Apache Kafka作为一款领先的分布式流处理平台,凭借其卓越的高吞吐量与低延迟特性,在大数据处理领域中占据重要地位。然而,在利用Kafka进行数据处理时,如何有效避免重复消费成为众多开发者关注的焦点。本文深入探讨了Kafka中可能出现重复消费的原因,并提出了四种实用的解决方案:利用消息偏移量手动控制消费进度;启用幂等性生产者确保消息不被重复发送;在消费者端实施去重机制;以及借助Kafka的事务支持实现精确的一次性处理。通过这些方法,开发者可根据不同的应用场景灵活选择最适合的策略,从而保障数据处理的准确性和一致性。
593 9
|
10月前
|
消息中间件 负载均衡 Java
"Kafka核心机制揭秘:深入探索Producer的高效数据发布策略与Java实战应用"
【8月更文挑战第10天】Apache Kafka作为顶级分布式流处理平台,其Producer组件是数据高效发布的引擎。Producer遵循高吞吐、低延迟等设计原则,采用分批发送、异步处理及数据压缩等技术提升性能。它支持按消息键值分区,确保数据有序并实现负载均衡;提供多种确认机制保证可靠性;具备失败重试功能确保消息最终送达。Java示例展示了基本配置与消息发送流程,体现了Producer的强大与灵活性。
133 3
|
11月前
|
消息中间件 存储 Kafka
kafka 在 zookeeper 中保存的数据内容
kafka 在 zookeeper 中保存的数据内容
117 3
下一篇
oss创建bucket