深度学习之3D人体姿态预测

简介: 基于深度学习的3D人体姿态预测是指利用深度学习模型,从图像或视频中自动估计人体的三维骨架结构或关节点位置。此任务在增强现实、动作捕捉、人体行为识别、虚拟现实等多个领域中有广泛应用。

基于深度学习的3D人体姿态预测是指利用深度学习模型,从图像或视频中自动估计人体的三维骨架结构或关节点位置。此任务在增强现实、动作捕捉、人体行为识别、虚拟现实等多个领域中有广泛应用。3D人体姿态预测面临的挑战包括姿态变化多样、遮挡、光照条件复杂以及不同视角下的深度信息恢复等问题。以下是其主要原理与方法:

1. 关键点检测与2D到3D预测

关键点检测:基于卷积神经网络(CNN)的模型首先从图像中提取人体的2D关键点(如肩膀、肘部、膝盖等关节点)。常见的网络架构包括Hourglass网络、OpenPose、HRNet等,这些模型通过逐层特征提取和回归来获得准确的2D关键点位置。

2D到3D转换:在获得2D关键点后,另一种方法是使用深度学习模型将这些2D坐标投影到三维空间中,从而推断3D姿态。常用的方法包括通过回归直接预测关节点的三维坐标,或使用带有物理约束的优化算法进行深度信息的恢复。

2. 端到端的3D姿态预测

一些方法尝试端到端地从图像中直接输出3D姿态,跳过显式的2D关键点检测。这类模型通常采用深层卷积网络结合自监督学习或生成对抗网络(GAN),直接从输入图像中回归出每个关节点的3D坐标。

骨架结构建模:这类模型在训练时往往结合骨架的物理约束,如关节点之间的长度和角度约束,以确保预测的姿态是物理上合理的。这些结构化信息通过网络中的先验知识或损失函数(如基于骨架的损失)引导模型学习。

3. 多视角学习

多视角融合:从多个视角同时拍摄人体,可以通过多视角融合来提高3D姿态预测的精度。这些方法通过多角度的图像输入,使用神经网络对不同视角下的关节点信息进行联合推断,从而减少单一视角带来的遮挡或深度模糊问题。

基于几何推理的多视角重建:除了使用神经网络,基于几何推理的方法也会结合多视角的几何约束进行人体三维姿态的恢复,例如通过三角测量法从不同视角恢复三维信息。

4. 时序信息的利用

视频中的3D姿态预测:当输入为视频时,时序信息对于姿态预测至关重要。基于递归神经网络(RNN)或时间卷积网络(TCN)的方法可以通过捕捉人体运动的动态变化,进一步提高预测精度和稳定性。

动作先验与动态建模:时序模型还可以通过学习常见的动作模式(如行走、跑步、跳跃等),为复杂姿态提供先验信息,帮助解决短时遮挡或关节重叠问题。

5. 弱监督与自监督学习

弱监督学习:由于标注三维人体姿态数据昂贵且耗时,一些方法采用弱监督或自监督学习,从未标注或少量标注的数据中学习3D姿态。模型可以通过2D关键点的投影误差、视频的时间一致性等信息进行自监督学习,从而减少对3D标注数据的依赖。

对抗训练:通过生成对抗网络(GAN)来训练预测模型,使得生成的3D姿态不仅符合数据的分布,还能通过判别器确保生成姿态的合理性和一致性。

6. 深度学习框架与数据集

常见的框架包括TensorFlow、PyTorch等。数据集方面,Human3.6M、MPII、COCO、3DPW等为人体3D姿态预测提供了标准化的训练和评估基准。

应用场景

虚拟现实和增强现实:通过精确的3D姿态预测,能够实现更加逼真的虚拟角色交互。

人体行为分析:在人机交互、运动分析、监控系统中,3D姿态预测可以帮助识别人类行为、动作异常等。

健康与康复:通过预测人体姿态,系统能够为康复训练提供精确的运动反馈。

通过深度学习的3D人体姿态预测方法,能够在复杂环境下从2D图像或视频中高效推断出三维姿态,并应用于多种实际场景。

相关文章
|
7月前
|
机器学习/深度学习 编解码 API
深度学习+不良身体姿势检测+警报系统+代码+部署(姿态识别矫正系统)
深度学习+不良身体姿势检测+警报系统+代码+部署(姿态识别矫正系统)
|
2月前
|
机器学习/深度学习 监控 人机交互
深度学习之视频中的姿态跟踪
基于深度学习的视频姿态跟踪是一项用于从视频序列中持续检测和跟踪人体姿态的技术。它能够识别人体的2D或3D关键点,并在时间维度上进行跟踪,主要应用于人机交互、体育分析、动作识别和虚拟现实等领域。
61 3
|
7月前
|
机器学习/深度学习 算法 计算机视觉
m基于Yolov2深度学习网络的人体喝水行为视频检测系统matlab仿真,带GUI界面
MATLAB 2022a中使用YOLOv2算法对avi视频进行人体喝水行为检测,结果显示成功检测到目标。该算法基于全卷积网络,通过特征提取、锚框和损失函数优化实现。程序首先打乱并分割数据集,利用预训练的ResNet-50和YOLOv2网络结构进行训练,最后保存模型。
82 5
|
机器学习/深度学习 编解码 计算机视觉
用于3D MRI和CT扫描的深度学习模型总结
医学成像数据与其他我们日常图像的最大区别之一是它们很多都是3D的,比如在处理DICOM系列数据时尤其如此。DICOM图像由很多的2D切片组成了一个扫描或身体的特定部分。
114 0
|
机器学习/深度学习 数据采集 存储
【3-D深度学习:肺肿瘤分割】创建和训练 V-Net 神经网络,并从 3D 医学图像中对肺肿瘤进行语义分割研究(Matlab代码实现)
【3-D深度学习:肺肿瘤分割】创建和训练 V-Net 神经网络,并从 3D 医学图像中对肺肿瘤进行语义分割研究(Matlab代码实现)
274 0
|
机器学习/深度学习 编解码 数据可视化
深度学习基础入门篇[9.2]:卷积之1*1 卷积(残差网络)、2D/3D卷积、转置卷积数学推导、应用实例
深度学习基础入门篇[9.2]:卷积之1*1 卷积(残差网络)、2D/3D卷积、转置卷积数学推导、应用实例
深度学习基础入门篇[9.2]:卷积之1*1 卷积(残差网络)、2D/3D卷积、转置卷积数学推导、应用实例
|
机器学习/深度学习 传感器 算法
基于深度学习的目标姿态检测方法_kaic
伴随着人工智能技术的发展,物体探测和辨识技术已被广泛用于各个领域,而作为物体探测的一个重要分支,物体姿态探测在机器人控制、自动驾驶等领域中扮演着重要角色。本文的目的在于探究基于单目相机的目标三维姿态检测方法,以实现对目标物体的快速、精确的三维姿态检测和识别,提高目标检测的准确率和效率,并为人工智能技术的发展提供新的思路和方法。 本文系统地介绍了基于单目相机的三维目标检测技术,并详细讨论了基于深度学习的单阶段目标检测算法,即YOLOv5算法。具体来说,本文采用YOLOv5算法搭建神经网络模型,在KITTI数据集构建训练集后对模型进行训练,再采集部分环境照片以及KITTI数据的部分照片构建测试集.
|
机器学习/深度学习 存储 人工智能
深度学习实战(十):使用 PyTorch 进行 3D 医学图像分割
深度网络在计算机视觉领域的兴起,为经典的图像处理技术表现不佳的问题提供了最先进的解决方案。在泛化的图像识别任务中,包括物体检测、图像分类和分割、活动识别、光流和姿势估计等问题,可以轻松地声称DNN(深度神经网络)已经取得了卓越的性能。
1467 0
|
机器学习/深度学习 传感器 SQL
领域最全 | 计算机视觉算法在路面坑洼检测中的应用综述(基于2D图像/3D LiDAR/深度学习)(下)
本文首先介绍了用于2D和3D道路数据采集的传感系统,包括摄像机、激光扫描仪和微软Kinect。随后,对 SoTA 计算机视觉算法进行了全面深入的综述,包括: (1)经典的2D图像处理,(2)3D点云建模与分割,(3)机器/深度学习。本文还讨论了基于计算机视觉的路面坑洼检测方法目前面临的挑战和未来的发展趋势: 经典的基于2D图像处理和基于3D点云建模和分割的方法已经成为历史; 卷积神经网络(CNN)已经展示了引人注目的路面坑洼检测结果,并有望在未来的进展中打破瓶颈的自/无监督学习多模态语义分割。作者相信本研究可为下一代道路状况评估系统的发展提供实用的指导。
领域最全 | 计算机视觉算法在路面坑洼检测中的应用综述(基于2D图像/3D LiDAR/深度学习)(下)
|
机器学习/深度学习 传感器 数据采集
领域最全 | 计算机视觉算法在路面坑洼检测中的应用综述(基于2D图像/3D LiDAR/深度学习)(上)
本文首先介绍了用于2D和3D道路数据采集的传感系统,包括摄像机、激光扫描仪和微软Kinect。随后,对 SoTA 计算机视觉算法进行了全面深入的综述,包括: (1)经典的2D图像处理,(2)3D点云建模与分割,(3)机器/深度学习。本文还讨论了基于计算机视觉的路面坑洼检测方法目前面临的挑战和未来的发展趋势: 经典的基于2D图像处理和基于3D点云建模和分割的方法已经成为历史; 卷积神经网络(CNN)已经展示了引人注目的路面坑洼检测结果,并有望在未来的进展中打破瓶颈的自/无监督学习多模态语义分割。作者相信本研究可为下一代道路状况评估系统的发展提供实用的指导。
领域最全 | 计算机视觉算法在路面坑洼检测中的应用综述(基于2D图像/3D LiDAR/深度学习)(上)
下一篇
DataWorks