30天拿下Rust之实战Web Server

简介: 30天拿下Rust之实战Web Server

概述

随着互联网技术的飞速发展,Web服务器作为承载网站与应用的核心组件,其性能、稳定性和安全性都显得至关重要。Rust语言凭借其独特的内存安全保证、高效的性能以及丰富的生态系统,成为了构建现代Web服务器的理想选择。

新建项目

首先,使用下面的命令创建一个新的Cargo项目web_server。

cargo new web_server

然后,修改Cargo.toml文件,添加必要的依赖项actix-web。actix-web是一个用Rust语言编写的高性能、高度可扩展的Web框架,专为构建安全、快速且资源效率高的Web应用程序而设计。作为Rust生态系统中较早出现且持续发展的项目,Actix-web享有良好的生态环境与活跃的社区支持,使其成为众多Rust Web开发者首选的框架之一。

[dependencies]
actix-web = { version = "4.5.0"}

基础Web服务器

接下来,我们创建一个最基础的Web服务器,它能够响应HTTP请求并返回简单的字符串响应。

在下面的示例代码中,我们首先导入了actix_web中的App和HttpServer,它们分别用于构建应用程序和启动HTTP服务器。我们还导入了HttpResponse,用于构建HTTP响应。

然后,我们定义一个处理HTTP请求的函数index(),这个函数简单地返回一个包含“Hello Rust”文本的HTTP 200 OK响应。

接下来,在main函数中,我们使用HttpServer::new来创建一个新的HTTP服务器。我们传递一个闭包给new方法,该闭包返回一个App实例。在App实例上,我们使用route方法来定义路由。这里我们定义了一个根路由/,并使用actix_web::web::get()来指定这是一个GET请求。然后,我们将index函数与这个路由关联起来。

最后,我们使用bind()方法来指定服务器要监听的地址和端口(这里是127.0.0.1:8080),并调用run方法来启动服务器。

use actix_web::HttpResponse;
use actix_web::{App, HttpServer};

async fn index() -> HttpResponse {
    HttpResponse::Ok().body("Hello Rust")
}

#[actix_web::main]
async fn main() -> std::io::Result<()> {
    HttpServer::new(|| App::new().route("/", actix_web::web::get().to(index)))
        .bind("127.0.0.1:8080")?
        .run()
        .await
}

在命令行中运行cargo run来启动程序,此时服务器开始监听localhost:8080。现在,我们可以使用任何Web浏览器来测试服务器。在浏览器中打开http://localhost:8080或者http://127.0.0.1:8080,我们应该能看到服务器返回的“Hello Rust”响应。

处理路由

为了构建更复杂的Web应用,我们需要引入路由机制。

在下面的示例代码中,我们添加了一个新的路由/new_route,它映射到一个新的处理函数new_route_handler。这个处理函数简单地返回一个包含文本"New route handler"的HTTP 200 OK响应。现在,服务器将能够响应两个路由:根路径/和新的路径/new_route。

use actix_web::HttpResponse;
use actix_web::{App, HttpServer};

async fn index() -> HttpResponse {
    HttpResponse::Ok().body("Hello Rust")
}

async fn new_route_handler() -> HttpResponse {
    HttpResponse::Ok().body("New route handler")
}

#[actix_web::main]
async fn main() -> std::io::Result<()> {
    HttpServer::new(|| App::new().
        route("/", actix_web::web::get().to(index))
        .route("/new_route", actix_web::web::get().to(new_route_handler)))
        .bind("127.0.0.1:8080")?
        .run()
        .await
}

处理JSON请求

对于API服务,经常需要处理JSON格式的请求与响应。修改Cargo.toml文件,引入serde和serde_json来简化工作。

[dependencies]
actix-web = { version = "4.5.0"}
serde = { version = "1", features = ["derive"] }
serde_json = "1"

在下面的示例代码中,我们首先导入了serde库中的Deserialize和Serialize特质,它们用于定义结构体可以被自动序列化和反序列化为JSON格式。

然后,定义了一个名为FormData的结构体,它有一个字段field_name,类型为String。通过derive属性,该结构体获得了从JSON字符串自动反序列化(Deserialize)的能力,以及将自身序列化为JSON字符串(Serialize)的能力,Debug特征使得结构体可以方便地输出调试信息。我们还定义了一个名为JsonResponse的结构体,它有一个字段message,类型也为String。这里只应用了Serialize特质,因为这个结构体是用来构造返回给客户端的JSON响应报文的,不需要反序列化能力。

最后,我们定义了处理POST请求的异步函数handle_post,它接受一个类型为web::Json<FormData>的参数。web::Json是一个wrapper类型,表示请求体应该被解析为FormData结构体。函数内部首先打印接收到的POST数据,然后创建一个JsonResponse实例,其中message字段内容为"Hello from Rust Server"。函数的最后,返回一个201 Created状态码的响应,主体内容为序列化后的JsonResponse实例。

use actix_web::{web, App, HttpResponse, HttpServer, Result};
use serde::{Deserialize, Serialize};

#[derive(Deserialize, Serialize, Debug)]
struct FormData {
    field_name: String,
}

#[derive(Serialize)]
struct JsonResponse {
    message: String,
}

async fn index() -> HttpResponse {
    HttpResponse::Ok().body("Hello Rust")
}

async fn new_route_handler() -> HttpResponse {
    HttpResponse::Ok().body("New route handler")
}

async fn handle_post(form_data: web::Json<FormData>) -> Result<HttpResponse> {
    println!("Received POST data: {:?}", form_data.into_inner());
    let response_data = JsonResponse {
        message: format!("Hello from {}", "Rust Server".to_string()),
    };
    Ok(HttpResponse::Created().json(response_data))
}

#[actix_web::main]
async fn main() -> std::io::Result<()> {
    HttpServer::new(|| {
        App::new()
            .route("/", web::get().to(index))
            .route("/new_route", web::get().to(new_route_handler))
            .route("/post_data", web::post().to(handle_post))
    })
    .bind("127.0.0.1:8080")?
    .run()
    .await
}

在命令行中运行cargo run来启动程序,此时服务器开始监听localhost:8080。我们可以使用Postman来模拟浏览器发送POST请求的行为,方法选择POST,路径为localhost:8080/post_data,Body选择raw/JSON,输入:{"field_name": "Hello from client"}。点击Send按钮,我们会收到Rust Web Server返回的POST响应,Body为:{"message": "Hello from Rust Server"}。

image.png

处理动态路由参数

要实现动态路由参数,我们可以使用actix-web提供的路径参数功能。路径参数允许我们在URL路径中定义占位符,这些占位符在请求到来时会被解析为具体的值。

在下面的示例代码中,我们新增了一个异步函数handle_dynamic_route,它接受一个类型为web::Path<String>的参数。web::Path<T>是actix-web提供的一个类型,用于捕获路径参数。这里我们使用String类型来捕获动态路由中的ID。接着,在应用程序配置中,我们添加了一个新的路由。这里的/{id}路径模板中,{id}是一个占位符,表示任何非斜杠字符组成的字符串。当一个请求到达,其URL路径匹配/{id}模板时,actix-web会将路径中对应的值作为web::Path<String>传递给handle_dynamic_route函数。

use actix_web::{web, App, HttpResponse, HttpServer, Result};
use serde::{Deserialize, Serialize};

#[derive(Deserialize, Serialize, Debug)]
struct FormData {
    field_name: String,
}

#[derive(Serialize)]
struct JsonResponse {
    message: String,
}

async fn index() -> HttpResponse {
    HttpResponse::Ok().body("Hello Rust")
}

async fn new_route_handler() -> HttpResponse {
    HttpResponse::Ok().body("New route handler")
}

async fn handle_post(form_data: web::Json<FormData>) -> Result<HttpResponse> {
    println!("Received POST data: {:?}", form_data.into_inner());
    let response_data = JsonResponse {
        message: format!("Hello from {}", "Rust Server".to_string()),
    };
    Ok(HttpResponse::Created().json(response_data))
}

async fn handle_dynamic_route(id: web::Path<String>) -> HttpResponse {
    HttpResponse::Ok().body(format!(
        "Process dynamic route with ID: {}",
        id.into_inner()
    ))
}

#[actix_web::main]
async fn main() -> std::io::Result<()> {
    HttpServer::new(|| {
        App::new()
            .route("/", web::get().to(index))
            .route("/new_route", web::get().to(new_route_handler))
            .route("/post_data", web::post().to(handle_post))
            .route("/{id}", web::get().to(handle_dynamic_route))
    })
    .bind("127.0.0.1:8080")?
    .run()
    .await
}

我们仍使用Postman来模拟浏览器的动态路由参数,方法选择GET,路径为localhost:8080/666,Body选择none。点击Send按钮,我们会收到Rust Web Server返回的GET响应,Body为:Process dynamic route with ID: 666。

image.png

总结

在本文中,我们不仅搭建了一个基础的Web服务器,还实现了路由、JSON请求、动态路由参数等功能。Rust凭借其严谨的安全模型、出色的性能和丰富的生态系统,为构建高效、安全的Web服务器提供了坚实的基础。

相关文章
|
12天前
|
弹性计算 人工智能 架构师
阿里云携手Altair共拓云上工业仿真新机遇
2024年9月12日,「2024 Altair 技术大会杭州站」成功召开,阿里云弹性计算产品运营与生态负责人何川,与Altair中国技术总监赵阳在会上联合发布了最新的“云上CAE一体机”。
阿里云携手Altair共拓云上工业仿真新机遇
|
8天前
|
机器学习/深度学习 算法 大数据
【BetterBench博士】2024 “华为杯”第二十一届中国研究生数学建模竞赛 选题分析
2024“华为杯”数学建模竞赛,对ABCDEF每个题进行详细的分析,涵盖风电场功率优化、WLAN网络吞吐量、磁性元件损耗建模、地理环境问题、高速公路应急车道启用和X射线脉冲星建模等多领域问题,解析了问题类型、专业和技能的需要。
2522 18
【BetterBench博士】2024 “华为杯”第二十一届中国研究生数学建模竞赛 选题分析
|
8天前
|
机器学习/深度学习 算法 数据可视化
【BetterBench博士】2024年中国研究生数学建模竞赛 C题:数据驱动下磁性元件的磁芯损耗建模 问题分析、数学模型、python 代码
2024年中国研究生数学建模竞赛C题聚焦磁性元件磁芯损耗建模。题目背景介绍了电能变换技术的发展与应用,强调磁性元件在功率变换器中的重要性。磁芯损耗受多种因素影响,现有模型难以精确预测。题目要求通过数据分析建立高精度磁芯损耗模型。具体任务包括励磁波形分类、修正斯坦麦茨方程、分析影响因素、构建预测模型及优化设计条件。涉及数据预处理、特征提取、机器学习及优化算法等技术。适合电气、材料、计算机等多个专业学生参与。
1525 15
【BetterBench博士】2024年中国研究生数学建模竞赛 C题:数据驱动下磁性元件的磁芯损耗建模 问题分析、数学模型、python 代码
|
4天前
|
存储 关系型数据库 分布式数据库
GraphRAG:基于PolarDB+通义千问+LangChain的知识图谱+大模型最佳实践
本文介绍了如何使用PolarDB、通义千问和LangChain搭建GraphRAG系统,结合知识图谱和向量检索提升问答质量。通过实例展示了单独使用向量检索和图检索的局限性,并通过图+向量联合搜索增强了问答准确性。PolarDB支持AGE图引擎和pgvector插件,实现图数据和向量数据的统一存储与检索,提升了RAG系统的性能和效果。
|
10天前
|
编解码 JSON 自然语言处理
通义千问重磅开源Qwen2.5,性能超越Llama
击败Meta,阿里Qwen2.5再登全球开源大模型王座
596 14
|
1月前
|
运维 Cloud Native Devops
一线实战:运维人少,我们从 0 到 1 实践 DevOps 和云原生
上海经证科技有限公司为有效推进软件项目管理和开发工作,选择了阿里云云效作为 DevOps 解决方案。通过云效,实现了从 0 开始,到现在近百个微服务、数百条流水线与应用交付的全面覆盖,有效支撑了敏捷开发流程。
19283 30
|
10天前
|
人工智能 自动驾驶 机器人
吴泳铭:AI最大的想象力不在手机屏幕,而是改变物理世界
过去22个月,AI发展速度超过任何历史时期,但我们依然还处于AGI变革的早期。生成式AI最大的想象力,绝不是在手机屏幕上做一两个新的超级app,而是接管数字世界,改变物理世界。
498 49
吴泳铭:AI最大的想象力不在手机屏幕,而是改变物理世界
|
1月前
|
人工智能 自然语言处理 搜索推荐
阿里云Elasticsearch AI搜索实践
本文介绍了阿里云 Elasticsearch 在AI 搜索方面的技术实践与探索。
18845 20
|
1月前
|
Rust Apache 对象存储
Apache Paimon V0.9最新进展
Apache Paimon V0.9 版本即将发布,此版本带来了多项新特性并解决了关键挑战。Paimon自2022年从Flink社区诞生以来迅速成长,已成为Apache顶级项目,并广泛应用于阿里集团内外的多家企业。
17530 13
Apache Paimon V0.9最新进展
|
3天前
|
云安全 存储 运维
叮咚!您有一份六大必做安全操作清单,请查收
云安全态势管理(CSPM)开启免费试用
368 4
叮咚!您有一份六大必做安全操作清单,请查收