Pandas实战(2):电商购物用户行为数据分析

简介: Pandas实战(2):电商购物用户行为数据分析

接上篇,我们继续使用Pandas对电商购物用户行为进行数据分析。

一、增加单价一列,看看价格最高与最低的商品

df['single_price']=df['price']/df['quantity']df

92e69517b0de0bceb63cd9018246d82f.png

1.1  找到单价最贵的20件商品

#找到单价最贵的商品df1=df.sort_values(by='single_price',ascending=False)df1[:10]

单价前20名,清一色的Technology,清一色的电子产品,呵呵呵。1.2 找到单价最便宜的20件商品

df1[-20:]

8fcadc01dcae3d22c0590dae38d58e43.png

单价排名后20名,清一色的Food & Beverage,清一色食品饮料

二、支付方式统计分析

dfp=df.groupby('payment_method').agg({'price':'sum'})dfp


f5fc63d3ca931291b2d431bf9fa67be5.png


画个饼图:

64786aa2ad19864f49f5451cf3aadf8b.png

银行卡支付最高,微信支付最低。三、数据集中顾客购买时间统计将时间列变为datetime格式。

#转换时间为datetime格式from datetime import datetimedf['invoice_date']=df['invoice_date'].apply(lambda x : datetime.strptime(x,"%d/%m/%Y"))

按时间列聚合,并统计购买行为次数,同时做相应的列重命名及index重命名。

#按时间列进行聚合并统计相应购买行为次数。dfd = df.groupby('invoice_date').agg({'invoice_date':'count'})dfd=dfd.rename(columns={'invoice_date': 'count1'})dfd.sort_values(by='count1',ascending=False)dfd=dfd.reset_index()dfd

f4bd928dc50402481c5a5a6225b34003.png

画个折线图看看:


import matplotlib.pyplot as pltfrom matplotlib.pyplot import rcParamsimport numpy as np
rcParams['font.sans-serif'] = ['SimHei']rcParams['axes.unicode_minus'] = False# 绘制折线图plt.figure(figsize=(10, 6))plt.plot(dfd['invoice_date'].to_numpy(), dfd['count1'].to_numpy(), marker='o')  # marker='o' 会在每个数据点上绘制一个圆圈plt.title('数据集每日的购物数量统计')plt.xlabel('日期')plt.ylabel('数量')plt.grid(True)plt.show()

d14aa9afb3de6f1fca1cb8125373a45e.png

这一个数据集中每日的消费者购物数量是均衡的,没有爆量的结果,看来数据集的编写者是用心筛选过的 未完待续!

相关文章
|
12天前
|
数据采集 数据可视化 数据挖掘
Pandas数据应用:天气数据分析
本文介绍如何使用 Pandas 进行天气数据分析。Pandas 是一个强大的 Python 数据处理库,适合处理表格型数据。文章涵盖加载天气数据、处理缺失值、转换数据类型、时间序列分析(如滚动平均和重采样)等内容,并解决常见报错如 SettingWithCopyWarning、KeyError 和 TypeError。通过这些方法,帮助用户更好地进行气候趋势预测和决策。
109 71
|
2月前
|
消息中间件 数据挖掘 Kafka
Apache Kafka流处理实战:构建实时数据分析应用
【10月更文挑战第24天】在当今这个数据爆炸的时代,能够快速准确地处理实时数据变得尤为重要。无论是金融交易监控、网络行为分析还是物联网设备的数据收集,实时数据处理技术都是不可或缺的一部分。Apache Kafka作为一款高性能的消息队列系统,不仅支持传统的消息传递模式,还提供了强大的流处理能力,能够帮助开发者构建高效、可扩展的实时数据分析应用。
107 5
|
11天前
|
存储 数据采集 数据可视化
Pandas数据应用:电子商务数据分析
本文介绍如何使用 Pandas 进行电子商务数据分析,涵盖数据加载、清洗、预处理、分析与可视化。通过 `read_csv` 等函数加载数据,利用 `info()` 和 `describe()` 探索数据结构和统计信息。针对常见问题如缺失值、重复记录、异常值等,提供解决方案,如 `dropna()`、`drop_duplicates()` 和正则表达式处理。结合 Matplotlib 等库实现数据可视化,探讨内存不足和性能瓶颈的应对方法,并总结常见报错及解决策略,帮助提升电商企业的数据分析能力。
112 73
|
8天前
|
存储 数据采集 数据可视化
Pandas数据应用:医疗数据分析
Pandas是Python中强大的数据操作和分析库,广泛应用于医疗数据分析。本文介绍了使用Pandas进行医疗数据分析的常见问题及解决方案,涵盖数据导入、预处理、清洗、转换、可视化等方面。通过解决文件路径错误、编码不匹配、缺失值处理、异常值识别、分类变量编码等问题,结合Matplotlib等工具实现数据可视化,并提供了解决常见报错的方法。掌握这些技巧可以提高医疗数据分析的效率和准确性。
51 22
|
3月前
|
数据采集 数据可视化 数据挖掘
基于Python的数据分析与可视化实战
本文将引导读者通过Python进行数据分析和可视化,从基础的数据操作到高级的数据可视化技巧。我们将使用Pandas库处理数据,并利用Matplotlib和Seaborn库创建直观的图表。文章不仅提供代码示例,还将解释每个步骤的重要性和目的,帮助读者理解背后的逻辑。无论你是初学者还是有一定基础的开发者,这篇文章都将为你提供有价值的见解和技能。
272 0
|
6天前
|
存储 数据采集 数据挖掘
Pandas数据应用:用户行为分析
本文介绍了如何使用Pandas进行用户行为分析,涵盖从基础概念到实际应用的多个方面。首先简要介绍了Pandas的安装与基本功能,接着详细讲解了数据加载、初步探索及常见问题(如数据缺失、重复记录和时间戳格式不统一)的处理方法。随后探讨了用户活跃度和路径分析等模式挖掘技巧,并总结了常见报错及避免措施。通过掌握这些内容,读者可以更高效地进行用户行为分析,提升产品设计和用户体验。
48 8
|
13天前
|
数据采集 数据可视化 索引
Pandas数据应用:股票数据分析
本文介绍了如何使用Pandas库进行股票数据分析。首先,通过pip安装并导入Pandas库。接着,从本地CSV文件读取股票数据,并解决常见的解析错误。然后,利用head()、info()等函数查看数据基本信息,进行数据清洗,处理缺失值和重复数据。再者,结合Matplotlib和Seaborn进行数据可视化,绘制收盘价折线图。最后,进行时间序列分析,设置日期索引、重采样和计算移动平均线。通过这些步骤,帮助读者掌握Pandas在股票数据分析中的应用。
45 5
|
8天前
|
数据采集 SQL 数据挖掘
电商数据分析的方法
电商数据分析涵盖从业务需求理解到数据呈现的全流程。初学者应循序渐进,掌握数据清洗、转换等技能,Python是重要工具。社交媒体营销分析关注用户参与度和KOL影响。实战教程如《2019电商数据分析师实战项目》提供Excel、SQL及Tableau应用案例,帮助巩固理论知识。代码示例展示了如何使用Pandas和SQLAlchemy进行销售数据分析,计算转化率。 (注:联系方式和感谢语已省略以符合要求)
电商数据分析的方法
|
25天前
|
数据采集 监控 数据挖掘
常用电商商品数据API接口(item get)概述,数据分析以及上货
电商商品数据API接口(item get)是电商平台上用于提供商品详细信息的接口。这些接口允许开发者或系统以编程方式获取商品的详细信息,包括但不限于商品的标题、价格、库存、图片、销量、规格参数、用户评价等。这些信息对于电商业务来说至关重要,是商品数据分析、价格监控、上货策略制定等工作的基础。
|
2月前
|
机器学习/深度学习 数据采集 数据可视化
Python数据科学实战:从Pandas到机器学习
Python数据科学实战:从Pandas到机器学习