深入探索 RUM 与全链路追踪:优化数字体验的利器

本文涉及的产品
Serverless 应用引擎 SAE,800核*时 1600GiB*时
性能测试 PTS,5000VUM额度
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
简介: 本文主要介绍了基于 OpenTeletemetry 与 W3C 协议构建端到端全链路的解决方案,同时探讨了 RUM 与端到端链路集成的最佳实践,希望可以为大家在生产环境落地应用提供一些参考。

作者:梅光辉(重彦)


背景介绍


随着可观测技术的持续演进,多数企业已广泛采用 APM、Tracing 及 Logging 解决方案,以此强化业务监控能力,尤其在互联网行业,产品的体验直接关系着用户的口碑,决定了市场命运,使得 RUM(真实用户监控)日益受到重视。然而,在面对由后端服务故障引起的体验问题时(例如,后端接口延迟引发的 APP 白屏或页面加载缓慢),如何有效的关联 RUM、APM 监控数据以及 Tracing 上下文,辅助问题排查以及影响面评估,成为一大挑战。


解决这一问题的关键在于如何实现从用户端到服务端的全链路打通,而 RUM 作为贴近用户的监测起点,天然适合担当此角色。本文旨在探讨端到端链路打通的解决方案,并分享 RUM 与端到端链路集成的最佳实践。


端到端链路打通的难点


技术架构复杂,多端、跨语言、跨团队场景多

image.png

一个典型的互联网应用,通常会包含用户终端(Web & 小程序/Android/iOS)、网关代理层(ALB/MSE/Ingress/Nginx)、后端服务(Java/Go/Python)以及中间件(数据库、消息、缓存)等部分,涵盖了前、后端开发以及中间件、运维团队,实现全链路打通,往往会面临以下问题:


1)不同的链路追踪工具,支持的主流语言、框架不一致,对跨端场景不友好;



支持的语言
OpenTelemetry Java, Python, Go, JavaScript, .NET, Ruby, PHP, Erlang, Swift, Rust, C++ 等
SkyWalking Java, .NET, Node.js, PHP, Python, Go, Ruby, Lua, OAP 等
Zipkin Java, Node.js, Ruby, Go, Scala, Python 等
Jaeger Java, Python, Go, C++, C#, Node.js 等


2)生产环境实施,需要前后端开发人员、中间件以及运维同学通力协作,接入成本较高;

3)链路打通之后,如何与 RUM、APM 等监控数据、以及日志打通,方便问题排查与定界。


不同协议无法兼容,生产环境难以平滑切换

针对端到端链路打通场景,目前,主流的链路追踪项目,比如:OpenTelemetry、Zipkin、Jaeger、Skywalking 等,都有定义各自的链路传播协议:


  • OpenTelemetry:w3c 透传协议
  • Skywalking:sw8(v3)透传协议
  • ZipKin:b3/b3multi 透传协议
  • Jaeger:jaeger 透传协议


但是,不同协议间存在兼容性问题,比如:OpenTelemetry 和 Skywalking 就无法相互兼容,而且不同厂商和开源项目对各透传协议的支持力度也不一致:



W3C b3/b3multi Jaeger OpenTracing sw8
Opentelemetry
Skywalking
Zipkin
Jaeger


因此,通常情况下,想要串联起完整的调用链路,就要求后端系统必须采用相同或者兼容的 Trace 协议,前端应用也需要引入对应的 SDK,并且,中间链路各个环节,比如:网关代理层,也必须保证协议 Header 的透传。


基于 OTel 与 W3C 的端到端链路解决方案


关注可观测领域的同学应该知道,近些年行业发展的一个显著趋势,是不断向标准化和开源生态方向整合,上文提到的 OpenTelemetry 项目和 W3C Trace Context 标准,都是这一趋势的代表项目,以下通过链路透传场景、链路透传协议以及跨协议兼容几个方面介绍基于 OTel 和 W3C Trace Context 的端到到链路解决方案。


链路透传场景

OpenTelemetry 使用一种称为“传播器”(Propagators)的机制来实现在不同环境和协议中 Trace 上下文的透传,确保在一个分布式系统中能够追踪完整的请求链路。无论是进程内还是进程间的通信,其核心都是通过特定的格式在请求头中携带必要的追踪信息。下面是 OpenTelemetry 如何在不同场景下实现 Trace 上下文透传的方案介绍:


进程内透传

  • 单线程场景:在单线程环境下,由于所有操作都在同一个线程上执行,因此可以直接通过局部变量(比如在 Java 语言中,通常会采用 ThreadLocal)来存储当前 Span 信息,当新的操作开始时,可以将当前 Scope 的 Span 作为 Parent Span,从而传递了 Trace 上下文;
  • 多线程/异步场景:在多线程异步编程场景,则需要在任务提交或异步调用时显式的携带Span上下文,比如:OpenTelemetry 就提供了 API(如:context.with(currentSpan))来创建一个带有特定 Span 的新 Context,并在此 Context 的作用域内执行代码,这样,即使是异步执行,也能确保 Trace 上下文可以被正确的传递和应用。

进程间透传

  • HTTP 场景:通常是将 Trace 上下文编码到 HTTP 请求头中,比如:上文提到的 W3C Trace Context 标准,就采用了 traceparent、tracestate 两个 header 来传递 Trace 上下文信息,客户端在发起请求时,会自动将当前的 Trace 信息添加到 HTTP 头中;服务端接收到请求后,通过相应的传播器解析这些头部,恢复或延续 Trace 上下文。
  • RPC 和其他自定义协议场景:对于非 HTTP 协议,如 gRPC、MQTT 等,原理类似,也是通过协议允许的头部或元数据字段来携带 Trace 上下文信息。OpenTelemetry 提供了多种传播器(如 JaegerPropagator、B3Propagator、W3CBaggagePropagator 等),可以根据具体协议的要求选择合适的传播器来序列化和反序列化 Trace 上下文。
  • 消息队列场景:在消息队列场景中,通常将 Trace ID、Span ID 等信息作为消息的属性或元数据随消息一起发送,接收方可以从消息中提取这些信息并恢复上下文。
  • 数据库场景:目前主流的数据库,比如:MySQL、PG 等,底层协议层面尚未提供相应扩展机制,因此绝大数链路追踪工具,包括:OpenTelemetry,均采用了客户端插桩的方式,仅在应用侧记录耗时、以及执行 SQL 等关键信息。


链路透传协议

这里重点介绍下 W3C Trace Contxt,也是目前国内外使用最多的一个协议标准,W3C Trace Context 是 W3C 组织所推出的一个规范,旨在规范分布式追踪中跟踪信息的传播格式,除了 HTTP 场景以外,也支持二进制、以及消息等场景(目前还处于 Draft 状态),详见 W3C 官网[1]

image.png

W3C Trace Context(HTTP Protocol)

Trace Context 规范主要定义了两个 HTTP 头部字段:traceparent 和 tracestate。


1. traceparent:采用扩展的巴科斯范式(ABNF)定义,由四个部分组成:


traceparent: {version}-{trace-id}-{parent-id}-{trace-flags}
  • version:2 位十六进制数字,表示当前 traceparent 头部字段的版本,如:00;
  • trace-id:32 位十六进制数字,用于表示整个 Trace 链路的唯一 ID,如:ec95e5a118ce450eac82ab9ec530b287;
  • parent-id:16 位十六进制数字,用于表示当前请求或操作的唯一 ID,如:a7be58f9cd8dd80d;
  • trace-flags:2 位十六进制数字,用于控制追踪标志,包含采样、追踪级别等,如:01。


2. tracestate:是对 traceparent 字段的扩展,用于携带额外的、服务间可能需要的追踪状态信息,并且是 traceparent 字段的伴随标头。


tracestate: {vendor1Key}={vendor1Value},{vendor2Key}={vendor2Value},...


链路传播器


Propagator 协议标准
tracecontext W3C Trace Context[2]
baggage W3C Baggage[3]
b3 B3[4]
b3multi B3Multi[5]
jaeger Jaeger[6]
opentracing OpenTracing[7]
xray AWS X-Ray[8]


OpenTelemetry 项目几乎已经支持了除 sw8 以外大多数透传协议,并且还内置了一些国内外云厂商的协议传播器,同时 Opentelemetry 也支持自定义 Propagator,我们可以组合不同的 Propagator,也可以基于 Opentelemetry 的 TextMapPropagator 实现一个自己的 Propagator。


RUM 集成端到端链路的最佳实践


为什么 RUM 适合作为链路入口

前面提到,RUM 作为用户请求的入口,在解决链路打通问题上,天生就具备优势。一个比较直观的解法,就是直接在 RUM 端侧生成链路追踪的 TraceID,然后通过透传协议,以 HTTP Header 的形式将 Trace 上下文传递给后端,后端应用就可以基于协议 Header,来初始化 Trace 上下文,并在后端系统调用中进行传递。


透传格式名称 格式 备注
tracecontext traceparent : {version}-{trace-id}-{parent-id}-{trace-flags}tracestate: rum={version}&{appType}&{pid}&{sessionId} 相关文档[9]
b3 b3: {TraceId}-{SpanId}-{SamplingState}-{ParentSpanId} 相关文档[10]
b3multi X-B3-TraceId: {TraceId}X-B3-SpanId: {SpanId}X-B3-ParentSpanId: {ParentSpanId}X-B3-Sampled: {SamplingState} 相关文档[11]
jaeger uber-trace-id : {trace-id}:{span-id}:{parent-span-id}:{flags} 相关文档[12]
sw8 sw8: {sample}-{trace-id}-{segment-id}-{0}-{service}-{instance}-{endpoint}-{peer} 相关文档[13]


相比直接在端侧集成开源协议 SDK,RUM 集成链路追踪还具有以下优势:


  • 优势一:可以将用户体检监控中的错误、缓慢、以及用户会话数据,与链路追踪数据联动,实现端到端分析,比如:某个用户请求,在端侧看可能很慢,但是后端链路显示耗时并不长,此时,结合 RUM 与后端调用链数据,最终发现是 DNS、网络层耗时较长;
  • 优势二:无需在端侧集成开源协议 SDK,也无需关心端侧链路数据上报的问题,尤其对于一些存在多个后端服务域名,并且协议还不相同的应用,可以在 RUM 产品中为不同域名设置不同的透传协议,一次接入即可实现一站式监控体验,极大降低了接入成本。


RUM 与 Trace 数据模型的融合

image.png

目前主流的 RUM 开源项目以及国内外云厂商,数据模型上基本都是以用户、会话作为核心,以 Event 的方式记录前端用户的页面加载、资源请求(包含 API 与静态资源),同时也会包含请求错误、JS 错误、崩溃、卡顿、自定义错误等异常数据,通过 API 请求,我们可以将 RUM 数据与后端调用链数据进行关联,从而获得从端侧用户到后端服务的完整链路,而 RUM Event 数据模型和 Trace Span 数据模型本身其实也是可以相互转换的。


Rum Resource Fields Otel Span Fields
rum.resource.trace_id traceId
rum.resource.trace.carrier(W3C traceparent) spanId
rum.resource.name spanName
rum.resource.timestamp startTime
rum.resource.duration duration
rum.resource.net.ip ip
rum.resource.status_code spanStatus
rum.resource.trace.carrier(W3C tracepstate) tracestate
rum.resource.ip、rum.sessionid resource
rum.user.id、rum.session.id、rum.view.name attributes


RUM 与端到端链路集成的两种方案

方案一:RUM 转 Span,构建完整 Trace 链路

image.png

RUM 转 Trace 的方案,通常是在端侧应用中接入 RUM 探针,通过 RUM 进行协议透传,同时记录 Trace 上下文信息,并在 RUM 数据接收侧,将 RUM Event 数据转换为标准的 Trace Span 数据,并将 RUM 相关信息(如:user、session、view 等)注入到 Span Attributes 中,这么做的好处是:我们可以在 RUM 与 Trace 中实现互联互通,从而在线上问题排查中,可以方便的进行根因定位,并直观的评估对用户侧产生的影响。

方案二:Span 转 RUM,基于 OTel 的扩展机制构建

image.png

Span 转 RUM 的方案,则是在端侧应用中接入 OTel SDK,然后通过 OTel 提供的扩展机制,在 OTel Collector 中实现一个自定义的 rum exporter,将 OTel SDK 上报的 Span 数据转换为 RUM Event 数据,当然,你也可以在端侧同时引入 RUM 与 OTel 的 SDK,然后通过 OTel SDK 中提供 SpanProcessor 进行扩展,像开源 RUM 项目 Sentry 就采用的是这种方案。


但是这个方案对于 RUM 的数据模型有一定要求,最好的方式就是 OTel 能够支持RUM数据模型,目前 OTel 社区也有相关的小组,正在往这个方向努力,具体可以参考 Github 上这个 Issue:https://github.com/open-telemetry/oteps/issues/169


RUM 集成端到端链路的实际应用

全链路洞察

image.png

RUM 与 Trace 链路打通后,一个最直观的应用场景就是全链路洞察,可以实现故障根因的快速定界,无需跳转产品和页面,这一点对于一些角色职责分离的大型团队比较有价值。

影响面分析

image.png

另外一个比较重要的应用场景,就是当后端系统出现问题时,可以记录故障期间用户侧的所有操作,同时结合调用链可以方便的定位出哪些请求受到了后端故障影响,从而精准地定位出故障的影响面,包含受影响的客户列表、终端设备、运营商、地域等信息。在某些情况下,还可以帮助我们判断线上问题处理优先级。


总结展望


本文主要介绍了基于 OpenTeletemetry 与 W3C 协议构建端到端全链路的解决方案,同时探讨了 RUM 与端到端链路集成的最佳实践,希望可以为大家在生产环境落地应用提供一些参考。实际上,除了上面介绍到的全链路洞察根因定位,以及影响面分析外,RUM 与全链路追踪的应用场景还有很多,比如:对于一些生产环境难以复现的问题,可以结合 RUM 的会话重放功能,进行问题复现等,对于解决线上疑难问题,优化用户体验,绝对是一大利器。


相关链接:

[1] W3C 官网

https://w3c.github.io/trace-context-protocols-registry/

[2] W3C Trace Context

https://www.w3.org/TR/trace-context/

[3] W3C Baggage

https://www.w3.org/TR/baggage/

[4] B3

https://github.com/openzipkin/b3-propagation

[5] B3Multi

https://github.com/openzipkin/b3-propagation

[6] Jaeger

https://www.jaegertracing.io/docs/1.21/client-libraries/#propagation-format

[7] OpenTracing

https://github.com/opentracing?q=basic&type=&language=

[8] AWS X-Ray

https://docs.aws.amazon.com/xray/latest/devguide/xray-concepts.html#xray-concepts-tracingheader

[9] 相关文档

https://www.w3.org/TR/trace-context/

[10] 相关文档

https://github.com/openzipkin/b3-propagation

[11] 相关文档

https://github.com/openzipkin/b3-propagation

[12] 相关文档

https://www.jaegertracing.io/docs/1.21/client-libraries/#propagation-format

[13] 相关文档

https://skyapm.github.io/document-cn-translation-of-skywalking/zh/8.0.0/protocols/Skywalking-Cross-Process-Propagation-Headers-Protocol-v3.html

参考文章:

[1] https://opentelemetry.io/docs/

[2] https://www.w3.org/TR/trace-context/

[3] https://w3c.github.io/trace-context-protocols-registry/

[4] https://docs.google.com/document/d/16Vsdh-DM72AfMg_FIt9yT9ExEWF4A_vRbQ3jRNBe09w/edit?pli=1

[5] https://develop.sentry.dev/sdk/telemetry/traces/opentelemetry/#step-1-implement-the-sentryspanprocessor-on-your-sdk

相关实践学习
通过云拨测对指定服务器进行Ping/DNS监测
本实验将通过云拨测对指定服务器进行Ping/DNS监测,评估网站服务质量和用户体验。
相关文章
|
7天前
|
弹性计算 人工智能 架构师
阿里云携手Altair共拓云上工业仿真新机遇
2024年9月12日,「2024 Altair 技术大会杭州站」成功召开,阿里云弹性计算产品运营与生态负责人何川,与Altair中国技术总监赵阳在会上联合发布了最新的“云上CAE一体机”。
阿里云携手Altair共拓云上工业仿真新机遇
|
4天前
|
机器学习/深度学习 算法 大数据
【BetterBench博士】2024 “华为杯”第二十一届中国研究生数学建模竞赛 选题分析
2024“华为杯”数学建模竞赛,对ABCDEF每个题进行详细的分析,涵盖风电场功率优化、WLAN网络吞吐量、磁性元件损耗建模、地理环境问题、高速公路应急车道启用和X射线脉冲星建模等多领域问题,解析了问题类型、专业和技能的需要。
2463 14
【BetterBench博士】2024 “华为杯”第二十一届中国研究生数学建模竞赛 选题分析
|
4天前
|
机器学习/深度学习 算法 数据可视化
【BetterBench博士】2024年中国研究生数学建模竞赛 C题:数据驱动下磁性元件的磁芯损耗建模 问题分析、数学模型、python 代码
2024年中国研究生数学建模竞赛C题聚焦磁性元件磁芯损耗建模。题目背景介绍了电能变换技术的发展与应用,强调磁性元件在功率变换器中的重要性。磁芯损耗受多种因素影响,现有模型难以精确预测。题目要求通过数据分析建立高精度磁芯损耗模型。具体任务包括励磁波形分类、修正斯坦麦茨方程、分析影响因素、构建预测模型及优化设计条件。涉及数据预处理、特征提取、机器学习及优化算法等技术。适合电气、材料、计算机等多个专业学生参与。
1499 14
【BetterBench博士】2024年中国研究生数学建模竞赛 C题:数据驱动下磁性元件的磁芯损耗建模 问题分析、数学模型、python 代码
|
1月前
|
运维 Cloud Native Devops
一线实战:运维人少,我们从 0 到 1 实践 DevOps 和云原生
上海经证科技有限公司为有效推进软件项目管理和开发工作,选择了阿里云云效作为 DevOps 解决方案。通过云效,实现了从 0 开始,到现在近百个微服务、数百条流水线与应用交付的全面覆盖,有效支撑了敏捷开发流程。
19273 29
|
1月前
|
人工智能 自然语言处理 搜索推荐
阿里云Elasticsearch AI搜索实践
本文介绍了阿里云 Elasticsearch 在AI 搜索方面的技术实践与探索。
18822 20
|
1月前
|
Rust Apache 对象存储
Apache Paimon V0.9最新进展
Apache Paimon V0.9 版本即将发布,此版本带来了多项新特性并解决了关键挑战。Paimon自2022年从Flink社区诞生以来迅速成长,已成为Apache顶级项目,并广泛应用于阿里集团内外的多家企业。
17515 13
Apache Paimon V0.9最新进展
|
6天前
|
编解码 JSON 自然语言处理
通义千问重磅开源Qwen2.5,性能超越Llama
击败Meta,阿里Qwen2.5再登全球开源大模型王座
361 11
|
1月前
|
存储 人工智能 前端开发
AI 网关零代码解决 AI 幻觉问题
本文主要介绍了 AI Agent 的背景,概念,探讨了 AI Agent 网关插件的使用方法,效果以及实现原理。
18697 16
|
2天前
|
算法 Java
JAVA并发编程系列(8)CountDownLatch核心原理
面试中的编程题目“模拟拼团”,我们通过使用CountDownLatch来实现多线程条件下的拼团逻辑。此外,深入解析了CountDownLatch的核心原理及其内部实现机制,特别是`await()`方法的具体工作流程。通过详细分析源码与内部结构,帮助读者更好地理解并发编程的关键概念。
|
2天前
|
SQL 监控 druid
Druid连接池学习
Druid学习笔记,使用Druid进行密码加密。参考文档:https://github.com/alibaba/druid
195 82