AppFlow:为您的任意模型赋能——RAG

本文涉及的产品
资源编排,不限时长
无影云电脑企业版,4核8GB 120小时 1个月
无影云电脑个人版,1个月黄金款+200核时
简介: 随着大语言模型参数规模的增加,微调成本高昂,知识检索增强方式逐渐成为主流。通过预置知识库,在模型推理前检索相关知识作为上下文,提升领域知识准确性和专业性。AppFlow现支持百炼知识库,无需额外开发,只需简单配置即可为任意模型提供RAG能力,适用于多种触发器,如钉钉机器人等。通过选择模型、配置RAG组件,并将结果发送回钉钉,轻松实现专业知识增强的回答。


随着大语言模型的参数规模越来越大,微调模型的代价越来越大,于是知识检索增强的方式成为越来越主流的选择。通过提前准备好的知识库,在模型进行推理之前进行知识检索作为上下文一同交给大模型进行推理,从而提升大模型对领域知识的掌握程度,提升回答的专业性和准确性。

AppFlow现在可以通过百炼知识库,为您的任意模型提供RAG能力,仅需多一个节点的配置,无需任何开发即可拥有RAG能力。

前提条件

开通百炼服务并创建好知识库。具体可参考知识库_大模型服务平台百炼(Model Studio)-阿里云帮助中心

选择触发器

登陆AppFlow控制台创建连接流页面,填写您的流名称。

“选择触发事件”,找到并点击选择“钉钉机器人”,触发事件选择“收到文本消息时”,点击“保存,进入下一步”

image.gif 编辑

本文以钉钉为例,但AppFlow提供的上下文功能不局限于钉钉,您的触发器可以是任意的。

配置RAG知识检索增强组件

image.gif

配置鉴权凭证

按照提示选择您的鉴权凭证,该凭证会自动为您创建一个拥有百炼调用权限的RAM角色。

具体分为两种情况:

  • 如果您想在已有的角色上添加权限,“选择已有角色”,系统会自动判断当前角色的权限策略是否符合要求,若符合,点击创建即可;

否则点击下一步,创建策略并添加。


任意输入策略名称,点击创建策略并点击授权即可。



  • 如果您想创建一个新角色,选择“创建新角色”


任意输入策略名称,点击创建策略并点击授权即可。


image.gif

在百炼中为RAM角色授权

点击链接,使用主账号或有相应权限的子账号登陆百炼主账号管理页面,点击右上角“新增用户”,类型选择“RAM角色”,选择您在AppFlow中创建凭证时选择或创建的那个RAM角色,点击“保存,继续配置”。

image.gif 编辑

点击增加权限按钮,选择知识库所对应的业务范围,并选择“访客”角色即可。

image.gif 编辑

在AppFlow填写执行动作入参配置

在钉钉场景下,用来检索知识的提问插入“请求体——会话消息——消息内容”。

WorkspaceID可以在百炼大模型平台获取,参考https://help.aliyun.com/zh/model-studio/developer-reference/obtain-api-key-app-id-and-workspace-id#732535cfc959h

IndexId 下拉选择即可。

检索知识条数表示需要检索并携带的知识条数,一般填写3-5轮即可。越高的知识条数可能会导致更多的Token消耗。

选择模型

选择你想要调用的模型,可以是我们提供的各种模型也可以是你自己部署的任意模型。

这里以通义千问为例:

角色下拉选择user

问题描述选择插入“2. 响应体——重写Query”,此处AppFlow会帮您重写好RAG的prompt,直接引用即可。

image.gif 编辑

此处,无论您使用的是什么模型,只要将模型的输入换成步骤二中的重写Query,即可实现RAG能力。

发送模型回答到钉钉

此处以AI卡片消息为例,您也可以选择其他消息形式。

image.gif 编辑

模版ID:填写钉钉卡片平台创建的模版ID,若您还没有模版,可以参考计算巢AppFlow实现模型对话流式输出-阿里云开发者社区 创建卡片部分进行创建

机器人Code:“1. 请求体——机器人代码”

字段key:固定填写 content。如果对您的AI卡片做了定制,可以按照您定制的变量值填写。

群聊ID:“1. 请求体——会话ID”

最后完成并保存流程。

发布并调用连接流

在连接流页面发布您的连接流,按照计算巢AppFlow实现模型对话流式输出-阿里云开发者社区的步骤,添加机器人即可调用使用。

相关文章
|
SQL 人工智能 分布式计算
基于阿里云PAI平台搭建知识库检索增强的大模型对话系统
基于原始的阿里云计算平台产技文档,搭建一套基于大模型检索增强答疑机器人。本方案已在阿里云线上多个场景落地,将覆盖阿里云官方答疑群聊、研发答疑机器人、钉钉技术服务助手等。线上工单拦截率提升10+%,答疑采纳率70+%,显著提升答疑效率。
|
自然语言处理 分布式计算 Java
基于OpenSearch向量检索版和智能问答版搭建企业专属对话搜索系统
本文将介绍如何使用OpenSearch向量检索版和智能问答版,搭建灵活自定义的企业专属对话搜索系统。
1994 1
|
22天前
|
机器学习/深度学习 存储 自然语言处理
方案测评|巧用文档智能和RAG构建大语言模型知识库
本文介绍了一款基于文档智能和大语言模型(LLM)的文档解析及问答应用,旨在提升企业文档管理和信息检索效率。系统通过文档解析、知识库构建和问答服务三大模块,实现了从文档上传到智能问答的全流程自动化。
|
2月前
|
自然语言处理 Serverless API
基于 EventBridge + DashVector 打造 RAG 全链路动态语义检索能力
本文将演示如何使用事件总线(EventBridge),向量检索服务(DashVector),函数计算(FunctionCompute)结合灵积模型服务[1]上的 Embedding API[2],来从 0 到 1 构建基于文本索引的构建+向量检索基础上的语义搜索能力。具体来说,我们将基于 OSS 文本文档动态插入数据,进行实时的文本语义搜索,查询最相似的相关内容。
|
1月前
|
人工智能 弹性计算 文字识别
基于阿里云文档智能和RAG快速构建企业"第二大脑"
在数字化转型的背景下,企业面临海量文档管理的挑战。传统的文档管理方式效率低下,难以满足业务需求。阿里云推出的文档智能(Document Mind)与检索增强生成(RAG)技术,通过自动化解析和智能检索,极大地提升了文档管理的效率和信息利用的价值。本文介绍了如何利用阿里云的解决方案,快速构建企业专属的“第二大脑”,助力企业在竞争中占据优势。
Nyx
|
2月前
|
算法
文档智能和检索增强生成构建知识库
本文介绍了文档智能(Document Mind)与检索增强生成(RAG)结合使用的原理及其优势。文档智能负责解析和结构化文档内容,RAG则利用这些数据提供准确的问答服务。部署过程中,清晰的步骤指导和详细的文档帮助快速解决问题。方案适用于企业知识库、客户支持系统等场景,但在处理大文档和复杂格式时需进一步优化。
Nyx
56 0
|
2月前
|
数据采集 自然语言处理 UED
文档智能和检索增强生成(RAG)技术
文档智能和检索增强生成(RAG)技术
|
5月前
|
人工智能 自然语言处理 搜索推荐
解读阿里云搜索开发工作台如何快速搭建AI语义搜索及RAG链路
本文介绍阿里云搜索开发工作台如何通过内置数据处理、查询分析、排序、效果测评、大模型等服务,结合阿里云搜索引擎及开源引擎,灵活打造AI语义搜索及RAG链路。
19958 15
|
5月前
|
人工智能 自然语言处理 搜索推荐
阿里云搜索开发工作台:快速搭建AI语义搜索与RAG链路的深度解析
阿里云搜索开发工作台凭借其丰富的组件化服务和强大的模型能力,为企业快速搭建AI语义搜索及RAG链路提供了有力支持。通过该平台,企业可以灵活调用各种服务,实现高效的数据处理、查询分析、索引构建和文本生成等操作,从而大幅提升信息获取与处理能力。随着AI技术的不断发展,阿里云搜索开发工作台将继续优化和完善其服务,为企业数字化转型和智能化升级注入更强动力。
171 0
|
5月前
|
人工智能 自然语言处理 搜索推荐
阿里云搜索开发工作台:打造智能语义搜索与RAG链路
随着大数据时代的信息爆炸,传统关键字搜索难以满足精准需求。阿里云搜索开发工作台集成AI技术和语义理解,助力企业快速构建智能语义搜索与RAG系统。该平台支持多源数据接入、NLP查询分析、高级排序算法及效果评估工具,并集成大规模预训练模型提升搜索质量。构建流程涵盖数据准备、索引构建、查询分析、文档检索、结果生成及展示。应用场景包括客户支持、内容推荐、电商搜索和新闻聚合等,极大提升了搜索的准确性和用户体验。