AppFlow:为您的任意模型赋能——RAG

本文涉及的产品
资源编排,不限时长
无影云电脑企业版,4核8GB 120小时 1个月
无影云电脑企业版,4核8GB 120小时 1个月
简介: 随着大语言模型参数规模的增加,微调成本高昂,知识检索增强方式逐渐成为主流。通过预置知识库,在模型推理前检索相关知识作为上下文,提升领域知识准确性和专业性。AppFlow现支持百炼知识库,无需额外开发,只需简单配置即可为任意模型提供RAG能力,适用于多种触发器,如钉钉机器人等。通过选择模型、配置RAG组件,并将结果发送回钉钉,轻松实现专业知识增强的回答。

       随着大语言模型的参数规模越来越大,微调模型的代价越来越大,于是知识检索增强的方式成为越来越主流的选择。通过提前准备好的知识库,在模型进行推理之前进行知识检索作为上下文一同交给大模型进行推理,从而提升大模型对领域知识的掌握程度,提升回答的专业性和准确性。

       AppFlow现在可以通过百炼知识库,为您的任意模型提供RAG能力,仅需多一个节点的配置,无需任何开发即可拥有RAG能力。

前提条件

开通百炼服务并创建好知识库。具体可参考知识库_大模型服务平台百炼(Model Studio)-阿里云帮助中心

选择触发器

登陆AppFlow控制台创建连接流页面,填写您的流名称。

“选择触发事件”,找到并点击选择“钉钉机器人”,触发事件选择“收到文本消息时”,点击“保存,进入下一步”

image.gif 编辑

本文以钉钉为例,但AppFlow提供的上下文功能不局限于钉钉,您的触发器可以是任意的。

配置RAG知识检索增强组件

image.gif 编辑

按照提示选择您的鉴权凭证,该凭证会自动为您创建一个拥有百炼调用权限的RAM角色。

在钉钉场景下,用来检索知识的提问插入“请求体——会话消息——消息内容”。

WorkspaceID可以在百炼大模型平台获取,参考获取APP-ID和Workspace ID_大模型服务平台百炼(Model Studio)-阿里云帮助中心

IndexId 下拉选择即可

检索知识条数表示需要检索并携带的知识条数

选择模型

选择你想要调用的模型,可以是我们提供的各种模型也可以是你自己部署的任意模型。

这里以通义千问为例:

角色下拉选择user

问题描述选择插入“2. 响应体——重写Query”,此处AppFlow会帮您重写好RAG的prompt,直接引用即可。

image.gif 编辑

此处,无论您使用的是什么模型,只要将模型的输入换成步骤二中的重写Query,即可实现RAG能力。

发送模型回答到钉钉

此处以AI卡片消息为例,您也可以选择其他消息形式。

image.gif 编辑

模版ID:填写钉钉卡片平台创建的模版ID,若您还没有模版,可以参考计算巢AppFlow实现模型对话流式输出-阿里云开发者社区 创建卡片部分进行创建

机器人Code:“1. 请求体——机器人代码”

字段key:固定填写 content。如果对您的AI卡片做了定制,可以按照您定制的变量值填写。

群聊ID:“1. 请求体——会话ID”

最后完成并保存流程。

发布并调用连接流

在连接流页面发布您的连接流,按照计算巢AppFlow实现模型对话流式输出-阿里云开发者社区的步骤,添加机器人即可调用使用。

相关文章
|
5月前
|
机器学习/深度学习 人工智能 安全
千帆大模型平台再升级:接入大模型最多、Prompt模板最全面
千帆大模型平台再升级:接入大模型最多、Prompt模板最全面
225 1
|
5月前
|
人工智能 自然语言处理 搜索推荐
向量检索服务是AI技术链路中的重要一环
向量检索服务是AI技术链路中的重要一环
137 0
|
11月前
|
SQL 人工智能 分布式计算
基于阿里云PAI平台搭建知识库检索增强的大模型对话系统
基于原始的阿里云计算平台产技文档,搭建一套基于大模型检索增强答疑机器人。本方案已在阿里云线上多个场景落地,将覆盖阿里云官方答疑群聊、研发答疑机器人、钉钉技术服务助手等。线上工单拦截率提升10+%,答疑采纳率70+%,显著提升答疑效率。
|
自然语言处理 分布式计算 Java
基于OpenSearch向量检索版和智能问答版搭建企业专属对话搜索系统
本文将介绍如何使用OpenSearch向量检索版和智能问答版,搭建灵活自定义的企业专属对话搜索系统。
1961 1
|
机器学习/深度学习 自然语言处理 算法
跨模态学习能力再升级,EasyNLP电商文图检索效果刷新SOTA
本⽂简要介绍我们在电商下对CLIP模型的优化,以及上述模型在公开数据集上的评测结果。最后,我们介绍如何在EasyNLP框架中调用上述电商CLIP模型。
|
16天前
|
JSON 达摩院 Java
大模型时代下的文档智能 | 文档解析(大模型版)
文档智能(Document Mind)是基于阿里巴巴达摩院技术打造的多模态文档识别与理解引擎,提供通用文档智能、行业文档智能和文档自学习能力,满足各类智能文档处理需求。尤其在企业中,它能有效处理文本、图片、扫描件等多种非结构化文档,释放数据价值。本文将介绍文档智能的应用场景、产品架构及其核心功能——文档解析(大模型版),并展示其在线体验与API接口调用方法。
|
2月前
|
人工智能 文字识别 算法
打造全场景、跨领域、多模态的AI工作流 | 开源图像标注工具 X-AnyLabeling v2.4.0 正式发布!
X-AnyLabeling是一款强大的辅助标注工具,集成了AI推理引擎和丰富功能,为图像数据工程师提供一站式解决方案。它支持图像和视频文件的自动标注,提供了包括矩形框、多边形在内的七种标注样式,适应多样化的训练场景需求。X-AnyLabeling内置了多种SOTA级AI模型,如YOLO、SAM系列等,并支持GPU加速和多种数据集格式的导入导出,确保高效的数据处理。此外,它还具备良好的跨平台兼容性,可在多种操作系统上运行,并提供详尽的帮助文档和社区支持,帮助用户轻松上手并解决使用过程中遇到的问题。
102 2
打造全场景、跨领域、多模态的AI工作流 | 开源图像标注工具 X-AnyLabeling v2.4.0 正式发布!
|
2月前
|
文字识别 并行计算 PyTorch
MiniCPM-V 系列模型在多模态文档 RAG 中的应用(无需OCR的多模态文档检索+生成)
现在我们以 OpenBMB 基于 MiniCPM-V-2.0 训练的端到端多模态检索模型 MiniCPM-Visual-Embedding-v0 为例,实现无需OCR的多模态文档检索与问答。
MiniCPM-V 系列模型在多模态文档 RAG 中的应用(无需OCR的多模态文档检索+生成)
|
3月前
|
人工智能 自然语言处理 搜索推荐
解读阿里云搜索开发工作台如何快速搭建AI语义搜索及RAG链路
本文介绍阿里云搜索开发工作台如何通过内置数据处理、查询分析、排序、效果测评、大模型等服务,结合阿里云搜索引擎及开源引擎,灵活打造AI语义搜索及RAG链路。
19847 15
|
3月前
|
人工智能 自然语言处理 搜索推荐
阿里云搜索开发工作台:快速搭建AI语义搜索与RAG链路的深度解析
阿里云搜索开发工作台凭借其丰富的组件化服务和强大的模型能力,为企业快速搭建AI语义搜索及RAG链路提供了有力支持。通过该平台,企业可以灵活调用各种服务,实现高效的数据处理、查询分析、索引构建和文本生成等操作,从而大幅提升信息获取与处理能力。随着AI技术的不断发展,阿里云搜索开发工作台将继续优化和完善其服务,为企业数字化转型和智能化升级注入更强动力。
97 0
下一篇
无影云桌面