文件的写入是否是原子的?多个线程写入同一个文件是否会写错乱?多个进程写入同一个文件是否会写错乱?想必这些问题多多少少会对我们产生一定的困扰,即使知道结果,很多时候也很难将这其中的原理清晰的表达给提问者,侯捷曾说过,源码面前,了无秘密,那么本文也希望从源代码的角度分析上述问题。在开始之前我们需要补充一下Linux 文件相关的一些基础原理,便于更好的看懂Linux源代码。
学过Linux的读者想必都应该知道文件的数据分为两个部分,一个部分就是文件数据本身,另外一个部分则是文件的元数据,也就是inode、权限、扩展属性、mtime、ctime、atime等等,inode对于一个文件来说及其的重要,可以唯一的标识一个文件(实际应该是inode + dev号,唯一标识一个文件,更准确来说应该是在同一个文件系统的前提下才成立,不同的文件系统inode是会重复的,不过这不是重点,姑且这里不严谨的认为inode就是用来唯一标识一个文件的吧),内核中将inode号和文件的元数据构建为一个struct inode
对象,该对象结构如下:
struct inode {
umode_t i_mode;
uid_t i_uid;
gid_t i_gid;
unsigned long i_ino;
atomic_t i_count;
dev_t i_rdev;
loff_t i_size;
struct timespec i_atime;
struct timespec i_mtime;
struct timespec i_ctime;
.......// 省略
};
通过这个inode对象就可以关联一个文件,然后对这个文件进行读写操作,Linux内核对于文件同样也有一个struct file
对象来表示,该对象结构如下:
struct file {
.....
const struct file_operations *f_op;
loff_t f_pos;
struct address_space *f_mapping;
....// 省略
};
有几个成员比较关键,一个是f_op,文件操作的方法集合,文件操作不用关心其底层的文件系统是什么,直接通过f_op成员找到对应的方法即可。另外一个则是f_pos,也就是这个文件读到哪里了,或者说是写到哪里了,是一个偏移量。一个进程打开一个文件的时候就会在内核中创建一个struct file
对象,读取文件的时候则分为以下几步:
- 通过fd找到对应对应的
struct file
对象 - 通过
struct file
对象获取当前的offset,也就是读取f_pos成员 - 通过f_op找到对应的操作方法,并传入要读取的偏移量进行数据的读取
- 读取完成后,重新设置新的offset
一次读文件的过程便是如此,对应到代码也是非常的清晰,如下:
// vfs_read -> do_sync_read
ssize_t do_sync_read(struct file *filp, char __user *buf, size_t len, loff_t *ppos)
{
struct iovec iov = { .iov_base = buf, .iov_len = len };
struct kiocb kiocb;
ssize_t ret;
// 设置要读取的长度和开始的偏移量
init_sync_kiocb(&kiocb, filp);
kiocb.ki_pos = *ppos;
kiocb.ki_left = len;
kiocb.ki_nbytes = len;
for (;;) {
// 实际开始进行读取操作
ret = filp->f_op->aio_read(&kiocb, &iov, 1, kiocb.ki_pos);
if (ret != -EIOCBRETRY)
break;
wait_on_retry_sync_kiocb(&kiocb);
}
if (-EIOCBQUEUED == ret)
ret = wait_on_sync_kiocb(&kiocb);
// 读完后更新最后的offset
*ppos = kiocb.ki_pos;
return ret;
}
文件的写入也是如此,拿到offet,调用实际的写入方法,最后更新offset。到此为止一个文件的读和写的大体过程我们是清楚了,很显然上述的过程并不是原子的,无论是文件的读还是写,都至少有两个步骤,一个是拿offset,另外一个则是实际的读和写。并且在整个过程中并没有看到加锁的动作,那么第一个问题就得到了解决。对于第二个问题我们可以简要的分析下,假如有两个线程,第一个线程拿到offset是1,然后开始写入,在写入的过程中,第二个线程也去拿offset,因为对于一个文件来说多个线程是共享同一个struct file
结构,因此拿到的offset仍然是1,这个时候线程1写结束,更新offset,然后线程2开始写。最后的结果显而易见,线程2覆盖了线程1的数据,通过分析可知,多线程写文件不是原子的,会产生数据覆盖。但是否会产生数据错乱,也就是数据交叉写入了?其实这种情况是不会发生的,至于为什么请看下面这段代码:
ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
unsigned long nr_segs, loff_t pos)
{
struct file *file = iocb->ki_filp;
struct inode *inode = file->f_mapping->host;
struct blk_plug plug;
ssize_t ret;
BUG_ON(iocb->ki_pos != pos);
// 文件的写入其实是加锁的
mutex_lock(&inode->i_mutex);
blk_start_plug(&plug);
ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
mutex_unlock(&inode->i_mutex);
if (ret > 0 || ret == -EIOCBQUEUED) {
ssize_t err;
err = generic_write_sync(file, pos, ret);
if (err < 0 && ret > 0)
ret = err;
}
blk_finish_plug(&plug);
return ret;
}
EXPORT_SYMBOL(generic_file_aio_write);
所以并不会产生数据错乱,只会存在数据覆盖的问题,既然如此我们在实际的进行文件读写的时候是否需要进行加锁呢? 加锁的确是可以解决问题的,但是在这里未免有点牛刀杀鸡的感觉,好在OS给我们提供了原子写入的方法,第一种就是在打开文件的时候添加O_APPEND标志,通过O_APPEND标志将获取文件的offset和文件写入放在一起用锁进行了保护,使得这两步是原子的,具体代码可以看上面代码中的__generic_file_aio_write
函数。
ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
unsigned long nr_segs, loff_t *ppos)
{
struct file *file = iocb->ki_filp;
struct address_space * mapping = file->f_mapping;
size_t ocount; /* original count */
size_t count; /* after file limit checks */
struct inode *inode = mapping->host;
loff_t pos;
ssize_t written;
ssize_t err;
ocount = 0;
err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
if (err)
return err;
count = ocount;
pos = *ppos;
vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
/* We can write back this queue in page reclaim */
current->backing_dev_info = mapping->backing_dev_info;
written = 0;
// 重点就在这个函数
err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
if (err)
goto out;
......// 省略
}
inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
{
struct inode *inode = file->f_mapping->host;
unsigned long limit = rlimit(RLIMIT_FSIZE);
if (unlikely(*pos < 0))
return -EINVAL;
if (!isblk) {
/* FIXME: this is for backwards compatibility with 2.4 */
// 如果带有O_APPEND标志,会直接拿到文件的大小,设置为新的offset
if (file->f_flags & O_APPEND)
*pos = i_size_read(inode);
if (limit != RLIM_INFINITY) {
if (*pos >= limit) {
send_sig(SIGXFSZ, current, 0);
return -EFBIG;
}
if (*count > limit - (typeof(limit))*pos) {
*count = limit - (typeof(limit))*pos;
}
}
}
......// 省略
}
通过上面的代码可知,如果带有O_APPEND标志的情况,在文件真正写入之前会调用generic_write_checks
进行一些检查,在检查的时候如果发现带有O_APPEND标志就将offset设置为文件的大小。而这整个过程都是在加锁的情况下完成的,所以带有O_APPEND标志的情况下,文件的写入是原子的,多线程写文件是不会导致数据错乱的。另外一种情况就是pwrite系统调用,pwrite系统调用通过让用户指定写入的offset,值得整个写入的过程天然的变成原子的了,在上文说到,整个写入的过程是因为获取offset和文件写入是两个独立的步骤,并没有加锁,通过pwrite省去了获取offset这一步,最终整个文件写入只有一步加锁的文件写入过程了。pwrite的代码如下:
SYSCALL_DEFINE(pwrite64)(unsigned int fd, const char __user *buf,
size_t count, loff_t pos)
{
struct file *file;
ssize_t ret = -EBADF;
int fput_needed;
if (pos < 0)
return -EINVAL;
file = fget_light(fd, &fput_needed);
if (file) {
ret = -ESPIPE;
if (file->f_mode & FMODE_PWRITE)
// 直接把offset也就是pos传递进去,而普通的write需要
// 需要先从struct file中拿到offset,然后传递进去
ret = vfs_write(file, buf, count, &pos);
fput_light(file, fput_needed);
}
return ret;
}
SYSCALL_DEFINE3(write, unsigned int, fd, const char __user *, buf,
size_t, count)
{
struct file *file;
ssize_t ret = -EBADF;
int fput_needed;
file = fget_light(fd, &fput_needed);
if (file) {
// 第一步拿offset
loff_t pos = file_pos_read(file);
// 第二步实际的写入
ret = vfs_write(file, buf, count, &pos);
// 第三步写回offset
file_pos_write(file, pos);
fput_light(file, fput_needed);
}
return ret;
}
最后一个问题是多个进程写同一个文件是否会造成文件写错乱,直观来说是多进程写文件不是原子的,这是很显而易见的,因为每个进程都拥有一个struct file
对象,是独立的,并且都拥有独立的文件offset,所以很显然这会导致上文中说到的数据覆盖的情况,但是否会导致数据错乱呢?,答案是不会,虽然struct file对象是独立的,但是struct inode是共享的(相同的文件无论打开多少次都只有一个struct inode对象),文件的最后写入其实是先要写入到页缓存中,而页缓存和struct inode是一一对应的关系,在实际文件写入之前会加锁,而这个锁就是属于struct inode对象(见上文中的mutex_lock(&inode->i_mutex)
)的,所有无论有多少个进程或者线程,只要是对同一个文件写数据,拿到的都是同一把锁,是线程安全的,所以也不会出现数据写错乱的情况。