谈谈基于深度学习的图像搜索

本文涉及的产品
图像搜索,任选一个服务类型 1个月
简介: 本文介绍了人脸识别技术及其应用,其中详细描述了向量化和余弦相似度的概念。人脸识别通过摄像头获取面部信息并与数据库中的信息对比,判断用户身份。向量化包括基于特征和基于卷积神经网络的方法,而余弦相似度则用于计算两个向量之间的相似程度,值越接近1表示越相似。通过具体实例和公式推导,展示了如何计算向量间的余弦相似度。

1.引入

人脸识别(Human Face Recognition)是使用应用软件中鉴别软件的操作者是不是期待的操作者的一种普遍的技术,用户通过用户名和密码的方法正在逐渐被人脸识别的方法所取代。操作者通过摄像头获取使用软件者的面部信息,与存在数据库中面部基础信息进行比对,然后判断软件的操作者是不是期待的操作者。类似于这样的技术还有声音识别(通过声音鉴别发声者是不是你),视频识别(通过视频寻找你是不是在这个视频中)等。这些应用在人工智能深度学习中都属于向量搜索的技术范畴,现在给大家简单介绍一下向量搜索。

2.人脸识别的案例

一般而言基础信息中的图像、音频、视频信息通过向量化存储在数据库中。比如一张面部照片存储在数据库中是一个经过向量化处理过的数据,而且这个向量化数据高达上千维,比如A=[1.34,5.43,9.12,2.11,323.80,…,43.01,711.20];在使用这个软件的时候,获取的实时脸部图像信息也通过相同的向量化算法转为一个向量数据。比如是B=[2.56,7.43,6.43,2.28,78.68,…,120.04,11.37];然后获得向量A与向量B的余弦相似度进行辨别,如果余弦相似度接近1,表明人脸识别成功;否则认为识别失败。下面分别来介绍一项向量化和余弦相似度两个概念。

3.向量化

向量化是把图像、音频、视频信息转换为向量的方法。向量化的方法主要分为基于特征的向量化方法和基于卷积神经网络的向量化两种方法。

基于特征的向量化方法主要是通过提取图像的色彩、纹理、形状等特征,然后将这些特征转化为向量。由于基于特征的向量化方法在处理复杂、模糊的图像时效果不太理想,所以一般不使用。

基于卷积神经网络的向量化可以自动学习从原始像素到高级语义特征的映射关系,从而提取出更加复杂和抽象的特征。这些特征向量不仅包含了图像的底层信息,还包含了高级的语义信息,因此可以更好地表示图像的内容。

深入了解基于特征的向量化和基于卷积神经网络的向量化需要具备高等数学的知识,在这里不进行介绍,有兴趣的同学可以寻找相关资料学习。

4.余弦相似度

4.1余弦相似度与余弦相似度公式

余弦相似度即计算向量A与向量B夹角的余弦值,如果这个值接近1,表明被识别两个对象相似;否则认为识别两个对象不相似。余弦相似度公式为:

对于向量A与B,cos(θ)=A·B/|A|*|B|。

假设一个二维向量A与B:

向量A(x1,y1,…,m1);

向量B(x2,y2,…,m2);

向量A(x1,y1,…,m1)与向量B(x2,y2,…,m2)夹角为θ。

那么:

cos(θ)=A·B/|A|*|B|=(x1x2+y1y2+…+m1m2)/(x12+y12+…+m12)1/2*(x22+y22+…+m22)1/2

4.2 一个例子

比如向量A[1,2,3],向量B[4,5,6],那么

代码语言:javascript

复制

cosθ=A·B/|A|*|B|

由于:

代码语言:javascript

复制

A·B=1*4+2*5+3*6=4+10+18=32
|A|*|B|=(1*1+2*2+3*3)1/2*(4*4+5*5+6*6)1/2
=(1+4+9)1/2*(16+25+36)1/2
=141/2*771/2
=3.74*8.77
=32.8

那么:

代码语言:javascript

复制

cosθ=A·B/|A|*|B|=32/32.8=0.98

所以向量A[1,2,3]与向量B[4,5,6]余弦相似度接近于1,这两个向量相似。

4.3余弦相似度公式的证明

下面分别通过平面几何和解析几何的方法来证明两个二维向量的余弦相似度公式。

4.3.1平面几何方法来证明

构造如下图形:

通过长边,得知:

代码语言:javascript

复制

cos(α-β)=cos(θ)=cos(α)cos(β)+sin(α)sin(β)

对于向量A(x1,y1)夹角为α

所以

代码语言:javascript

复制

cos(α)=x1/|A|; sin(α)=y1/|A|

对于向量B(x2,y2)夹角为β

所以:

代码语言:javascript

复制

cos(β)=x2/|B|; sin(β)=y2/|B|

因此:

代码语言:javascript

复制

cos(α)cos(β) = x1/|A|*x2/|B|=x1x2/|A||B|
sin(α)sin(β) =y1/|A|*y2/|B|=y1y2/|A||B|
cos(θ)=cos(α)cos(β)+sin(α)sin(β)
      =x1x2/|A||B|+y1y2/|A||B|
      =(x1x2+y1y2)/|A||B|
      =A·B/|A||B|

4.3.2解析几何方法来证明

如下图所示:

对于向量A(x1,y1)夹角为α,对于向量B(x2,y2)夹角为β。

现在让向量A(x1,y1)与向量B(x2,y2)逆时针旋转β(由于β是逆时针方向的。现在顺时针方向旋转β角度,所以为逆时针旋转-β角度),使得向量B与X轴重合。

A(x1,y1) 顺时针旋转β后得到:

代码语言:javascript

复制

A′(x1cos(-β)-y1sin(-β),x1sin(-β)+y1cos(-β))
B′(|B|,0)

由于

代码语言:javascript

复制

cos(-β)= cos(β);sin(-β)=- sin(β)

所以

代码语言:javascript

复制

A′(x1cos(β)+y1sin(β),-x1sin(β)+y1cos(β))
B′(|B|,0)

A′与B′的夹角为α-β即θ。

所以

代码语言:javascript

复制

cos(θ)=(x1cos(β)+y1sin(β))/|A|

由于

代码语言:javascript

复制

cos(β)= x2/|B|
sin(β)= y2/|B|
cos(θ)=(x1cos(β)+y1sin(β))/|A|
      =(x1x2/|B|+y1y2/|B|)/|A|
      =(x1x2+y1y2)/|A||B|
       = A·B/|A||B|
目录
相关文章
|
机器学习/深度学习 存储 搜索推荐
深度学习表征的不合理有效性——从头开始构建图像搜索服务(一)
还在为搜索引擎的工作原理感到困惑吗?看完本篇就可以自己动手构建搜图服务了。
5204 1
|
机器学习/深度学习 搜索推荐 计算机视觉
深度学习表征的不合理有效性——从头开始构建图像搜索服务(二)
还在为搜索引擎的工作原理感到困惑吗?看完本篇就可以自己动手构建搜图服务了。
2451 0
|
3月前
|
机器学习/深度学习 编解码 人工智能
计算机视觉五大技术——深度学习在图像处理中的应用
深度学习利用多层神经网络实现人工智能,计算机视觉是其重要应用之一。图像分类通过卷积神经网络(CNN)判断图片类别,如“猫”或“狗”。目标检测不仅识别物体,还确定其位置,R-CNN系列模型逐步优化检测速度与精度。语义分割对图像每个像素分类,FCN开创像素级分类范式,DeepLab等进一步提升细节表现。实例分割结合目标检测与语义分割,Mask R-CNN实现精准实例区分。关键点检测用于人体姿态估计、人脸特征识别等,OpenPose和HRNet等技术推动该领域发展。这些方法在效率与准确性上不断进步,广泛应用于实际场景。
450 64
计算机视觉五大技术——深度学习在图像处理中的应用
|
6月前
|
机器学习/深度学习 运维 安全
深度学习在安全事件检测中的应用:守护数字世界的利器
深度学习在安全事件检测中的应用:守护数字世界的利器
259 22
|
7月前
|
机器学习/深度学习 传感器 数据采集
深度学习在故障检测中的应用:从理论到实践
深度学习在故障检测中的应用:从理论到实践
512 6
|
3月前
|
机器学习/深度学习 数据采集 存储
深度学习在DOM解析中的应用:自动识别页面关键内容区块
本文探讨了如何通过深度学习模型优化东方财富吧财经新闻爬虫的性能。针对网络请求、DOM解析与模型推理等瓶颈,采用代理复用、批量推理、多线程并发及模型量化等策略,将单页耗时从5秒优化至2秒,提升60%以上。代码示例涵盖代理配置、TFLite模型加载、批量预测及多线程抓取,确保高效稳定运行,为大规模数据采集提供参考。
|
5月前
|
机器学习/深度学习 人工智能 运维
深度学习在流量监控中的革命性应用
深度学习在流量监控中的革命性应用
163 40
|
5月前
|
机器学习/深度学习 运维 资源调度
深度学习在资源利用率优化中的应用:让服务器更聪明
深度学习在资源利用率优化中的应用:让服务器更聪明
237 6
|
5月前
|
机器学习/深度学习 自然语言处理 监控
深入探索:深度学习在时间序列预测中的强大应用与实现
时间序列分析是数据科学和机器学习中一个重要的研究领域,广泛应用于金融市场、天气预报、能源管理、交通预测、健康监控等多个领域。时间序列数据具有顺序相关性,通常展示出时间上较强的依赖性,因此简单的传统回归模型往往不能捕捉其中复杂的动态特征。深度学习通过其非线性建模能力和层次结构的特征提取能力,能够有效地捕捉复杂的时间相关性和非线性动态变化模式,从而在时间序列分析中展现出极大的潜力。
|
7月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习的原理与应用:开启智能时代的大门
深度学习的原理与应用:开启智能时代的大门
436 16