在Python中操纵json数据的最佳方式

简介: 在Python中操纵json数据的最佳方式

1 简介

在日常使用Python的过程中,我们经常会与json格式的数据打交道,尤其是那种嵌套结构复杂的json数据,从中抽取复杂结构下键值对数据的过程枯燥且费事。

而熟悉xpath的朋友都知道,对于xml格式类型的具有层次结构的数据,我们可以通过编写xpath语句来灵活地提取出满足某些结构规则的数据。

类似的,JSONPath也是用于从json数据中按照层次规则抽取数据的一种实用工具,在Python中我们可以使用jsonpath这个库来实现JSONPath的功能。

2 在Python中使用JSONPath提取json数据

jsonpath是一个第三方库,所以我们首先需要通过pip install jsonpath对其进行安装。

2.1 一个简单的例子

安装完成后,我们首先来看一个简单的例子,从而初探其使用方式:

这里使用到的示例json数据来自高德地图步行导航接口,包含了从天安门广场到西单大悦城的步行导航结果,原始数据如下,层次结构较深:


假如我想要获取其嵌套结构中steps键值对下每段行程的耗时duration数据,配合jsonpath就可以这样做:

import json
from jsonpath import jsonpath
# 读入示例json数据
with open('json示例.json', encoding='utf-8') as j:
    demo_json = json.loads(j.read())
# 配合JSONPath表达式提取数据
jsonpath(demo_json, '$..steps[*].duration')

其中$..steps[*].duration就是我们用于描述数据位置规则的JSONPath语句,配合jsonpath()便可以提取出对应信息,下面我们就来学习jsonpath中支持的常用JSONPath语法:

2.2 jsonpath中的常用JSONPath语法

为了满足日常提取数据的需求,JSONPath中设计了一系列语法规则来实现对目标值的定位,其中常用的有:

  • 「按位置选择节点」

jsonpath中主要有以下几种按位置选择节点的方式:

功能 语法
根节点 $
当前节点 @
子节点 .或[]
任意子节点 *
任意后代节点 ..

让我们来演示一下它们的一些用法:

# 提取所有duration键对应值
jsonpath(demo_json, '$..duration')

# 提取所有steps键的子节点对应instruction值
jsonpath(demo_json, '$..steps.*.instruction')

  • 「索引子节点」

有些时候我们需要在选择过程中对子节点做多选或按位置选择操作,就可以使用到jsonpath中的相关功能:

# 多选所有steps键的子节点对应的instruction与action值
jsonpath(demo_json, '$..steps.*[instruction,action]')

# 选择steps键的第0个子节点对应的instruction与action值
jsonpath(demo_json, '$..steps[0][instruction,action]')
# 选择steps键的第1到3(不包括3)个子节点对应的instruction与action值
jsonpath(demo_json, '$..steps[1:3][instruction,action]')
# 配合@,选择steps键的最后一个子节点对应的instruction与action值
jsonpath(demo_json, '$..steps[(@.length-1)][instruction,action]')

  • 「条件筛选」

有些时候我们需要根据子节点的某些键值对值,对选择的节点进行筛选,在jsonpath中支持常用的==!=><等比较运算符,以==比较符为例,这里配合@定位符从当前节点提取子节点,语法为?(@.键名 比较符 值)

# 找到所有steps子节点中orientation为“西”的
jsonpath(demo_json, '$..steps[?(@.orientation == "西")]')

而如果想要提取所有具有指定键的节点,可以参考下面的例子:

# 找到所有具有polyline键的节点对应的polyline与road键对应值
jsonpath(demo_json, '$..[?(@.polyline)][polyline,road]')

2.3 返回结果的形式

在前面的例子中,我们所有的返回结果直接就是提取到的满足条件的结果,而jsonpath()中还提供了另一种特殊的结果返回形式,只需要设置参数result_type=None就可以改直接返回结果为返回每个结果的JSONPath表达式:

# 获取结果的JSONPath表达式
jsonpath(demo_json, '$..[?(@.polyline)][polyline,road]', result_type=None)

以上介绍的均为jsonpath库中的常规功能,可以满足基础的json数据提取需求,而除了jsonpath之外,还有其他具有更加丰富拓展功能的JSONPath类的第三方库,可以帮助我们实现很多进阶灵活的操作,我们将在下一篇文章中继续讨论。

目录
相关文章
|
1天前
|
算法 Serverless 数据处理
从集思录可转债数据探秘:Python与C++实现的移动平均算法应用
本文探讨了如何利用移动平均算法分析集思录提供的可转债数据,帮助投资者把握价格趋势。通过Python和C++两种编程语言实现简单移动平均(SMA),展示了数据处理的具体方法。Python代码借助`pandas`库轻松计算5日SMA,而C++代码则通过高效的数据处理展示了SMA的计算过程。集思录平台提供了详尽且及时的可转债数据,助力投资者结合算法与社区讨论,做出更明智的投资决策。掌握这些工具和技术,有助于在复杂多变的金融市场中挖掘更多价值。
22 12
|
6天前
|
数据采集 数据安全/隐私保护 Python
从零开始:用Python爬取网站的汽车品牌和价格数据
在现代化办公室中,工程师小李和产品经理小张讨论如何获取懂车帝网站的汽车品牌和价格数据。小李提出使用Python编写爬虫,并通过亿牛云爬虫代理避免被封禁。代码实现包括设置代理、请求头、解析网页内容、多线程爬取等步骤,确保高效且稳定地抓取数据。小张表示理解并准备按照指导操作。
从零开始:用Python爬取网站的汽车品牌和价格数据
|
30天前
|
JSON 缓存 API
解析电商商品详情API接口系列,json数据示例参考
电商商品详情API接口是电商平台的重要组成部分,提供了商品的详细信息,支持用户进行商品浏览和购买决策。通过合理的API设计和优化,可以提升系统性能和用户体验。希望本文的解析和示例能够为开发者提供参考,帮助构建高效、可靠的电商系统。
39 12
|
1月前
|
数据采集 Web App开发 数据可视化
Python用代理IP获取抖音电商达人主播数据
在当今数字化时代,电商直播成为重要的销售模式,抖音电商汇聚了众多达人主播。了解这些主播的数据对于品牌和商家至关重要。然而,直接从平台获取数据并非易事。本文介绍如何使用Python和代理IP高效抓取抖音电商达人主播的关键数据,包括主播昵称、ID、直播间链接、观看人数、点赞数和商品列表等。通过环境准备、代码实战及数据处理与可视化,最终实现定时任务自动化抓取,为企业决策提供有力支持。
|
1月前
|
JSON 前端开发 搜索推荐
关于商品详情 API 接口 JSON 格式返回数据解析的示例
本文介绍商品详情API接口返回的JSON数据解析。最外层为`product`对象,包含商品基本信息(如id、name、price)、分类信息(category)、图片(images)、属性(attributes)、用户评价(reviews)、库存(stock)和卖家信息(seller)。每个字段详细描述了商品的不同方面,帮助开发者准确提取和展示数据。具体结构和字段含义需结合实际业务需求和API文档理解。
|
2月前
|
数据采集 存储 XML
python实战——使用代理IP批量获取手机类电商数据
本文介绍了如何使用代理IP批量获取华为荣耀Magic7 Pro手机在电商网站的商品数据,包括名称、价格、销量和用户评价等。通过Python实现自动化采集,并存储到本地文件中。使用青果网络的代理IP服务,可以提高数据采集的安全性和效率,确保数据的多样性和准确性。文中详细描述了准备工作、API鉴权、代理授权及获取接口的过程,并提供了代码示例,帮助读者快速上手。手机数据来源为京东(item.jd.com),代理IP资源来自青果网络(qg.net)。
|
2月前
|
数据采集 Web App开发 监控
Python爬虫:爱奇艺榜单数据的实时监控
Python爬虫:爱奇艺榜单数据的实时监控
|
2月前
|
数据采集 分布式计算 大数据
构建高效的数据管道:使用Python进行ETL任务
在数据驱动的世界中,高效地处理和移动数据是至关重要的。本文将引导你通过一个实际的Python ETL(提取、转换、加载)项目,从概念到实现。我们将探索如何设计一个灵活且可扩展的数据管道,确保数据的准确性和完整性。无论你是数据工程师、分析师还是任何对数据处理感兴趣的人,这篇文章都将成为你工具箱中的宝贵资源。
|
2月前
|
数据采集 数据可视化 数据挖掘
利用Python自动化处理Excel数据:从基础到进阶####
本文旨在为读者提供一个全面的指南,通过Python编程语言实现Excel数据的自动化处理。无论你是初学者还是有经验的开发者,本文都将帮助你掌握Pandas和openpyxl这两个强大的库,从而提升数据处理的效率和准确性。我们将从环境设置开始,逐步深入到数据读取、清洗、分析和可视化等各个环节,最终实现一个实际的自动化项目案例。 ####
305 10
|
3月前
|
传感器 物联网 开发者
使用Python读取串行设备的温度数据
本文介绍了如何使用Python通过串行接口(如UART、RS-232或RS-485)读取温度传感器的数据。详细步骤包括硬件连接、安装`pyserial`库、配置串行端口、发送请求及解析响应等。适合嵌入式系统和物联网应用开发者参考。
92 3

热门文章

最新文章

推荐镜像

更多