带你十天轻松搞定 Go 微服务系列(八、服务监控)

本文涉及的产品
可观测可视化 Grafana 版,10个用户账号 1个月
可观测监控 Prometheus 版,每月50GB免费额度
简介: 带你十天轻松搞定 Go 微服务系列(八、服务监控)

序言

我们通过一个系列文章跟大家详细展示一个 go-zero 微服务示例,整个系列分十篇文章,目录结构如下:

  1. 环境搭建:带你十天轻松搞定 Go 微服务系列(一)
  2. 服务拆分:带你十天轻松搞定 Go 微服务系列(二)
  3. 用户服务:带你十天轻松搞定 Go 微服务系列(三)
  4. 产品服务:带你十天轻松搞定 Go 微服务系列(四)
  5. 订单服务:带你十天轻松搞定 Go 微服务系列(五)
  6. 支付服务:带你十天轻松搞定 Go 微服务系列(六)
  7. RPC 服务 Auth 验证:带你十天轻松搞定 Go 微服务系列(七)
  8. 服务监控(本文)
  9. 链路追踪
  10. 分布式事务

期望通过本系列带你在本机利用 Docker 环境利用 go-zero 快速开发一个商城系统,让你快速上手微服务。

完整示例代码:https://github.com/nivin-studio/go-zero-mall

首先,我们来看一下整体的服务拆分图:

8.1 Prometheus 介绍

Prometheus 是一款基于时序数据库的开源监控告警系统,基本原理是通过 HTTP 协议周期性抓取被监控服务的状态,任意服务只要提供对应的 HTTP 接口就可以接入监控。不需要任何 SDK 或者其他的集成过程,输出被监控服务信息的 HTTP 接口被叫做 exporter 。目前互联网公司常用的服务大部分都有 exporter 可以直接使用,比如 VarnishHaproxyNginxMySQLLinux 系统信息(包括磁盘、内存、CPU、网络等等)。Promethus 有以下特点:

  • 支持多维数据模型(由度量名和键值对组成的时间序列数据)
  • 支持 PromQL 查询语言,可以完成非常复杂的查询和分析,对图表展示和告警非常有意义
  • 不依赖分布式存储,单点服务器也可以使用
  • 支持 HTTP 协议主动拉取方式采集时间序列数据
  • 支持 PushGateway 推送时间序列数据
  • 支持服务发现和静态配置两种方式获取监控目标
  • 支持接入 Grafana

8.2 go-zero 使用 Prometheus 监控服务

go-zero 框架中集成了基于 Prometheus 的服务指标监控,go-zero 目前在 http 的中间件和 rpc 的拦截器中添加了对请求指标的监控。

主要从 请求耗时请求错误 两个维度,请求耗时采用了 Histogram 指标类型定义了多个 Buckets 方便进行分位统计,请求错误采用了 Counter 类型,并在 http metric 中添加了 path 标签,rpc metric 中添加了 method 标签以便进行细分监控。

接下来我们分别为前面几章实现的服务添加 Prometheus 监控,首先我们先回顾下 第二章 服务拆分,为了模拟服务的分布式部署,我们是在一个容器里启动了所有的服务,并为其分配了不同的端口号。下面我们再为这些服务分配一个 Prometheus 采集指标数据的端口号。

服务 api 服务端口号 rpc 服务端口号 api 指标采集端口号 rpc 指标采集端口号
user 8000 9000 9080 9090
product 8001 9001 9081 9091
order 8002 9002 9082 9092
pay 8003 9003 9083 9093

8.2.1 添加 user api 服务 Prometheus 配置

$ vim mall/service/user/api/etc/user.yaml
Name: User
Host: 0.0.0.0
Port: 8000
...
Prometheus:
  Host: 0.0.0.0
  Port: 9080
  Path: /metrics

8.2.2 添加 user rpc 服务 Prometheus 配置

$ vim mall/service/user/rpc/etc/user.yaml
Name: user.rpc
ListenOn: 0.0.0.0:9000
...
Prometheus:
  Host: 0.0.0.0
  Port: 9090
  Path: /metrics

8.2.3 添加 product api 服务 Prometheus 配置

$ vim mall/service/product/api/etc/product.yaml
Name: Product
Host: 0.0.0.0
Port: 8001
...
Prometheus:
  Host: 0.0.0.0
  Port: 9081
  Path: /metrics

8.2.4 添加 product rpc 服务 Prometheus 配置

$ vim mall/service/product/rpc/etc/product.yaml
Name: product.rpc
ListenOn: 0.0.0.0:9001
...
Prometheus:
  Host: 0.0.0.0
  Port: 9091
  Path: /metrics

8.2.5 添加 order api 服务 Prometheus 配置

$ vim mall/service/order/api/etc/order.yaml
Name: Order
Host: 0.0.0.0
Port: 8002
...
Prometheus:
  Host: 0.0.0.0
  Port: 9082
  Path: /metrics

8.2.6 添加 order rpc 服务 Prometheus 配置

$ vim mall/service/order/rpc/etc/order.yaml
Name: order.rpc
ListenOn: 0.0.0.0:9002
...
Prometheus:
  Host: 0.0.0.0
  Port: 9092
  Path: /metrics

8.2.7 添加 pay api 服务 Prometheus 配置

$ vim mall/service/pay/api/etc/pay.yaml
Name: Pay
Host: 0.0.0.0
Port: 8003
...
Prometheus:
  Host: 0.0.0.0
  Port: 9083
  Path: /metrics

8.2.8 添加 pay rpc 服务 Prometheus 配置

$ vim mall/service/pay/rpc/etc/pay.yaml
Name: pay.rpc
ListenOn: 0.0.0.0:9003
...
Prometheus:
  Host: 0.0.0.0
  Port: 9093
  Path: /metrics

提示:配置修改后,需要重启服务才会生效。

8.2.9 修改 Prometheus 配置

第一章 环境搭建 中我们集成了 Prometheus 服务,在prometheus 目录下有个 prometheus.yml 的配置文件,我们现在需要修改这个配置文件。

# my global config
global:
  scrape_interval: 15s # Set the scrape interval to every 15 seconds. Default is every 1 minute. 
  evaluation_interval: 15s # Evaluate rules every 15 seconds. The default is every 1 minute.     
  # scrape_timeout is set to the global default (10s).
# Alertmanager configuration
alerting:
  alertmanagers:
    - static_configs:
        - targets:
          # - alertmanager:9093
# Load rules once and periodically evaluate them according to the global 'evaluation_interval'.  
rule_files:
  # - "first_rules.yml"
  # - "second_rules.yml"
# A scrape configuration containing exactly one endpoint to scrape:
# Here it's Prometheus itself.
scrape_configs:
  # The job name is added as a label `job=<job_name>` to any timeseries scraped from this config.
  - job_name: "prometheus"
    # metrics_path defaults to '/metrics'
    # scheme defaults to 'http'.
    static_configs:
      - targets: ["localhost:9090"]
  # 我们自己的商城项目配置
  - job_name: 'mall'
    static_configs:
      # 目标的采集地址
      - targets: ['golang:9080']
        labels:
          # 自定义标签
          app: 'user-api'
          env: 'test'
      - targets: ['golang:9090']
        labels:
          app: 'user-rpc'
          env: 'test'
      - targets: ['golang:9081']
        labels:
          app: 'product-api'
          env: 'test'
      - targets: ['golang:9091']
        labels:
          app: 'product-rpc'
          env: 'test'
      - targets: ['golang:9082']
        labels:
          app: 'order-api'
          env: 'test'
      - targets: ['golang:9092']
        labels:
          app: 'order-rpc'
          env: 'test'
      - targets: ['golang:9083']
        labels:
          app: 'pay-api'
          env: 'test'
      - targets: ['golang:9093']
        labels:
          app: 'pay-rpc'
          env: 'test'

提示:配置文件修改好后,需要重启 Prometheus 服务容器才能生效。

8.2.10 访问 Prometheus 可视化界面

  • 第一章 环境搭建 中我们集成了 Prometheus 服务,并为其端口号9090 做了宿主机端口 3000 的映射关系,所以在浏览器中输入 http://127.0.0.1:3000/ 访问 Prometheus 界面。

  • 选择 Status -> Targets 菜单,即可看到我们配置的采集目标的状态和自定义的标签。

  • 我们多次访问 api 服务的接口后,选择 Graph 菜单,在查询输入框中输入 {path="api接口地址"} 或者 {method="rpc接口方法"} 指令,即可查看监控指标。

8.3 使用 Grafana 可视化 Prometheus 指标数据

8.3.1 添加 Prometheus 数据源

  • 第一章 环境搭建 中我们集成了 Grafana 服务,并为其端口号3000 做了宿主机端口 4000 的映射关系,所以在浏览器中输入 http://127.0.0.1:4000/ 访问 Grafana 界面。点击左侧边栏 Configuration -> Data Source -> Add data source 进行数据源添加。

image.svg

  • 然后选择 Prometheus 数据源

image.svg

  • 填写 HTTP 配置中 URL 地址(我这里的 IP地址Prometheus 所在容器的 IP地址),然后点击 Save & test 按,上方会提示 Data source is working,说明我们数据源添加成功且正常工作。

image.svg

8.3.2 添加 Variables 用于服务筛选

  • 点击左侧边栏 Dashboard 选择右上角 Dashboard settings 按钮,在 Settings 页面选择 Variables -> Add variable 添加变量,方便针对不同的标签进行过滤筛选。

  • 分别添加 api_app API服务名称,rpc_app RPC服务名称变量,用于不同服务的筛选。变量数据源选择 Prometheus 数据源,使用正则表达式提取出对应的 app 标签。

8.3.3 添加 api 接口 qps 仪表盘

  • 回到 Dashboard 页面选择右上角 Add panel 按钮,然后再选择 Add an empty panel 添加一个空的面板。

  • 面板编辑页,修改面板标题为 API接口QPS,在 Metrics 中输入 sum(rate(http_server_requests_duration_ms_count{app="$api_app"}[5m])) by (path)path 维度统计 api 接口的 qps

8.3.4 添加 rpc 接口 qps 仪表盘

  • 再新建一个面板,修改面板标题为 RPC接口QPS,在 Metrics 中输入 sum(rate(rpc_server_requests_duration_ms_count{app="$rpc_app"}[5m])) by (method)method 维度统计 rpc 接口的 qps

8.3.5 添加 api 接口状态码仪表盘

  • 再新建一个面板,修改面板标题为 API接口状态码,在 Metrics 中输入 sum(rate(http_server_requests_code_total{app="$api_app"}[5m])) by (code)code 维度统计 api 接口的状态码

8.3.6 添加 rpc 接口状态码仪表盘

  • 再新建一个面板,修改面板标题为 RPC接口状态码,在 Metrics 中输入 sum(rate(rpc_server_requests_code_total{app="$rpc_app"}[5m])) by (code)code 维度统计 rpc 接口的状态码

8.3.7 保存仪表盘

  • 调整下面板位置,选择右上角 Save dashboard 按钮保存仪表盘。

项目地址

https://github.com/zeromicro/go-zero

相关实践学习
通过可观测可视化Grafana版进行数据可视化展示与分析
使用可观测可视化Grafana版进行数据可视化展示与分析。
相关文章
|
4天前
|
JavaScript Java Go
探索Go语言在微服务架构中的优势
在微服务架构的浪潮中,Go语言以其简洁、高效和并发处理能力脱颖而出。本文将深入探讨Go语言在构建微服务时的性能优势,包括其在内存管理、网络编程、并发模型以及工具链支持方面的特点。通过对比其他流行语言,我们将揭示Go语言如何成为微服务架构中的一股清流。
|
2月前
|
Go API Docker
热门go与微服务15
热门go与微服务15
32 2
|
3月前
|
消息中间件 人工智能 供应链
go-zero 微服务实战系列(二、服务拆分)
go-zero 微服务实战系列(二、服务拆分)
|
1天前
|
监控 Go API
Go语言在微服务架构中的应用实践
在微服务架构的浪潮中,Go语言以其简洁、高效和并发处理能力脱颖而出,成为构建微服务的理想选择。本文将探讨Go语言在微服务架构中的应用实践,包括Go语言的特性如何适应微服务架构的需求,以及在实际开发中如何利用Go语言的特性来提高服务的性能和可维护性。我们将通过一个具体的案例分析,展示Go语言在微服务开发中的优势,并讨论在实际应用中可能遇到的挑战和解决方案。
|
2天前
|
Go 数据处理 API
Go语言在微服务架构中的应用与优势
本文摘要采用问答形式,以期提供更直接的信息获取方式。 Q1: 为什么选择Go语言进行微服务开发? A1: Go语言的并发模型、简洁的语法和高效的编译速度使其成为微服务架构的理想选择。 Q2: Go语言在微服务架构中有哪些优势? A2: 主要优势包括高性能、高并发处理能力、简洁的代码和强大的标准库。 Q3: 文章将如何展示Go语言在微服务中的应用? A3: 通过对比其他语言和展示Go语言在实际项目中的应用案例,来说明其在微服务架构中的优势。
|
21天前
|
Cloud Native Go API
Go语言在微服务架构中的创新应用与实践
本文深入探讨了Go语言在构建高效、可扩展的微服务架构中的应用。Go语言以其轻量级协程(goroutine)和强大的并发处理能力,成为微服务开发的首选语言之一。通过实际案例分析,本文展示了如何利用Go语言的特性优化微服务的设计与实现,提高系统的响应速度和稳定性。文章还讨论了Go语言在微服务生态中的角色,以及面临的挑战和未来发展趋势。
|
22天前
|
运维 Go 开发者
Go语言在微服务架构中的应用与优势
本文深入探讨了Go语言在构建微服务架构中的独特优势和实际应用。通过分析Go语言的核心特性,如简洁的语法、高效的并发处理能力以及强大的标准库支持,我们揭示了为何Go成为开发高性能微服务的首选语言。文章还详细介绍了Go语言在微服务架构中的几个关键应用场景,包括服务间通信、容器化部署和自动化运维等,旨在为读者提供实用的技术指导和启发。
|
26天前
|
负载均衡 Go API
探索Go语言在微服务架构中的应用与优势
在这篇技术性文章中,我们将深入探讨Go语言(又称为Golang)在构建微服务架构时的独特优势。文章将通过对比分析Go语言与其他主流编程语言,展示Go在并发处理、性能优化、以及开发效率上的优势。同时,我们将通过一个实际的微服务案例,详细说明如何利用Go语言构建高效、可扩展的微服务系统。
|
30天前
|
安全 Go 云计算
探索Go语言在微服务架构中的应用与优势
在本文中,我们将深入探讨Go语言(又称为Golang)在构建微服务架构中的独特优势。文章将分析Go语言的并发模型、简洁的语法以及高效的编译速度,以及这些特性如何使其成为微服务架构的理想选择。我们将通过一个简单的微服务示例,展示Go语言在实际开发中的表现,并讨论其在性能和可维护性方面的优势。
|
27天前
|
消息中间件 监控 Go
Go语言在微服务架构中的优势与实践
【10月更文挑战第10天】Go语言在微服务架构中的优势与实践
下一篇
无影云桌面