一起来读Greenplum/Deepgreen执行计划-阿里云开发者社区

开发者社区> 数据库> 正文

一起来读Greenplum/Deepgreen执行计划

简介: 日常SQL优化过程中,最好用的手段就是通过执行计划。在Greenplum和Deepgreen中,运行 EXPLAIN 后产生的执行计划呈树状,这棵树的每一个分叉,都代表了一个单独的数据库操作,例如:表扫描、表连接、聚合、排序。

日常SQL优化过程中,最好用的手段就是通过执行计划。在Greenplum和Deepgreen中,运行 EXPLAIN 后产生的执行计划呈树状,这棵树的每一个分叉,都代表了一个单独的数据库操作,例如:表扫描、表连接、聚合、排序。

由于返回数据行数是从下向上传递的,所以我们在分析执行计划时,也应该自下而上。通常来说,最底下的是表扫描操作(索引、位图索引扫描)。如果查询中涉及到连接、聚合、排序操作,那么表扫描动作的上层就会有对应的这些操作。通常最顶上的部分是节点间数据移动(重分布、广播、聚集操作),在查询过程中,这些操作会涉及到在节点间移动数据。

EXPLAIN 执行计划中,每一个单独的步骤都会呈现在单独一行里,带有对应的动作类型及查询数据所耗费的时间(查询首行所用时间..查询全部所用时间):

1.cost

Cost以磁盘页读取为测量单位,1.0等同于一个顺序的磁盘页读取。第一个预估时间是起始消耗,即查询首行所消耗的时间,第二个预估值是总消耗,即查询全部行所用的时间。

2.rows

rows指的是执行计划某部分返回的总行数。这个数量通常少于实际的返回行数,反应的只是一个预估的数量。最顶层的返回的预估数量最接近实际查询、修改或删除影响的行数。

3.width

操作返回的所有数据所占用的字节数。

很重要的一点是,上层节点所花费的时间包括所以子节点占用时间,计划最顶层包含总执行花费的预估,这也是我们追求优化的部分。另外执行计划的消耗只与执行计划本身关心的步骤有关,与查询结果传输到客户端的消耗时间等因素无关。

如果某个查询的性能特别低,那么我们可以通过查看执行计划来定位问题原因。下面是一些小技巧

1.查询计划中是否有操作耗时特别的长?

当我们分析查询计划时,是否有一个异常操作消耗了大部分的查询时间?比如,在执行索引扫描时,时间比预期的要长很多,这时候我们基本可以判断此索引可能已经超期了,需要重建。

2.查询计划预估的时间和真实的时间接近吗?

我们通过运行 EXPLAIN ANALYZE ,查看执行计划预估的返回行数与实际返回的行数是否接近,如果出入很大,说明统计信息是有问题的,我们需要对相关表/列收集更多的统计信息。

3.选择语句中的限定条件是否生效更早?

在执行计划中,选择性限定条件应该更早的应用,目的是让更少的数据返回到上层操作中。如果查询在选择性限定条件应用后表现并不好,返回的消耗依然很大,我们可以收集相关列的统计信息再看看是否会提高性能;另外,还可以通过调整SQL语句中不合理的 WHERE 条件来提高性能。

4.查询计划是否选择了最佳的JOIN顺序?

当我们的查询里面有很多连接操作(JOIN)时,要确保执行计划选择了一个最优连接顺序。拥有大量返回数据的连接应该尽早完成,以保证我们为上层操作返回更少的行。如果执行计划没有选择最佳的连接顺序,我们可以设置参数 join_collapse_limit=1 ,然后在SQL语句中使用明确的JOIN语法强迫执行计划按照特定的执行顺序执行。另外,我们可以收集相关列的统计信息再看看是否会提高性能。

5.查询计划是否有选择性的扫描分区表?

如果我们使用查询中涉及到了分区表数据查询,那么查询计划是否直接定位到扫描满足条件的分区,而不是扫描整张表。

6.查询计划是否适当的选择Hash Aggregate和Hash Join操作?

Hash操作比其他类型的聚合或者连接操作要快很多,行数据的比较和分类操作是在内存中进行,而不是通过读写磁盘完成。为了能够使用Hash操作,我们必须保证有足够的 work memory 可以容纳查询计划返回的行数据,所以我们可以通过尝试增加work memory来提高查询性能。通过运行EXPLAIN ANALYZE命令,这样可以看出哪些计划会有数据使用到磁盘,需要多少额外的work memory等,为work memory的调整提供参考。例如:

Work_mem used: 23430K bytes avg, 23430K bytes max (seg0).
Work_mem wanted: 33649K bytes avg, 33649K bytes max (seg0) to lessen workfile I/O affecting 2 workers.

Ends~

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

分享:
数据库
使用钉钉扫一扫加入圈子
+ 订阅

分享数据库前沿,解构实战干货,推动数据库技术变革

其他文章